JOURNAL OF APPLIED INFORMATICS AND COMPUTING
Vol. 7 No. 1 (2023): July 2023

Perbandingan Metode Klasterisasi Data Bertipe Campuran: One-Hot-Encoding, Gower Distance, dan K-Prototype Berdasarkan Akurasi (Studi Kasus: Chronic Kidney Disease Dataset)

Fadilah, Zahra Rizky (Unknown)
Wijayanto, Arie Wahyu (Unknown)



Article Info

Publish Date
31 Jul 2023

Abstract

This study aims to compare the one-hot-encoding method, Gower distance combined with k-means, DBSCAN, and OPTICS algorithms, and k-prototype for clustering mixed data types based on accuracy. The dataset used in this research is the chronic kidney disease (CKD) dataset sourced from the UCI Machine Learning Repository. Based on the evaluation using the silhouette index, it is found that k-prototype with the number of clusters k=2 is the most optimal clustering method because it provides the highest silhouette index value compared to the other four methods, with a value of 0,3796. Cluster 1 contains 175 observations, while cluster 2 contains 225 observations. When associated with the labels on the dataset, the clustering results provide an accuracy value of 81,25 percent.

Copyrights © 2023






Journal Info

Abbrev

JAIC

Publisher

Subject

Computer Science & IT

Description

Journal of Applied Informatics and Computing (JAIC) Volume 2, Nomor 1, Juli 2018. Berisi tulisan yang diangkat dari hasil penelitian di bidang Teknologi Informatika dan Komputer Terapan dengan e-ISSN: 2548-9828. Terdapat 3 artikel yang telah ditelaah secara substansial oleh tim editorial dan ...