Data Science: Journal of Computing and Applied Informatics
Vol. 7 No. 2 (2023): Data Science: Journal of Computing and Applied Informatics (JoCAI)

Preventing recession through GDP growth prediction: A classical and machine learning classification approach

Saputri, Prilyandari Dina (Unknown)
Angrenani, Arin Berliana (Unknown)
Fitriana, Ika Nur Laily (Unknown)



Article Info

Publish Date
31 Jul 2023

Abstract

Classification methods are a popular method applied in many various fields of science. To represent the effect of predictor factors on categorical response variables, different machine learning classification algorithms are used, namely logistic regression, neural network (NN), random forest, support vector machine (SVM), and bayesian model averaging (BMA). Every classifier has its unique characteristic, performing well in certain datasets but not in others. Hence, it is always a quest to find the best classifier to use for a certain dataset. Economic growth, most commonly using a gross regional domestic product, is experiencing a recession or acceleration, especially before and during the COVID-19 pandemic. This research proposed a comparison of classification methods using regional GDP data for 2019-2020, before and during the COVID-19 pandemic, by predictor variables; percentage of workers, foreign direct investment (PMA), regional revenue (PAD), general allocation fund (DAU), revenue sharing fund (DBH), and the dummy of COVID-19. The results are that all selected machine learning models can classify the regional GDP growth perfectly for the training data, but, NN model outperforms the other methods with an accuracy of 100% in training and testing data. COVID-19 and the PMA are the most significant variables predicting regional GDP growth for all models. Further research relating to interpretable machine learning, such as feature interaction, global surrogate, and Shapley values, is also necessary to predict regional GDP growth using machine learning methods.

Copyrights © 2023






Journal Info

Abbrev

JoCAI

Publisher

Subject

Computer Science & IT

Description

Data Science: Journal of Computing and Applied Informatics (JoCAI) is a peer-reviewed biannual journal (January and July) published by TALENTA Publisher and organized by Faculty of Computer Science and Information Technology, Universitas Sumatera Utara (USU) as an open access journal. It welcomes ...