Claim Missing Document
Check
Articles

Found 3 Documents
Search

MAPPING INDONESIA'S AGRICULTURAL DIVERSITY: CLUSTERING PROVINCES WITH SELF-ORGANIZING MAPS Fitriana, Ika Nur Laily; Leviany, Fonda; Faulina, Ria; Nuramaliyah, Nuramaliyah; Safitri, Emeylia
Jurnal Lebesgue : Jurnal Ilmiah Pendidikan Matematika, Matematika dan Statistika Vol. 5 No. 3 (2024): Jurnal Lebesgue : Jurnal Ilmiah Pendidikan Matematika, Matematika dan Statistik
Publisher : LPPM Universitas Bina Bangsa

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.46306/lb.v5i3.844

Abstract

The agricultural sector has an important role in national economic development in Indonesia. Based on data from the 2023 Agricultural Census from the Central Bureau of Statistics, it was found that the quantity and quality of the agricultural sector in various provinces in Indonesia still varies greatly. Hence, the suitable statistical methods are needed, namely cluster analysis, to group 38 provinces in Indonesia based on similar characteristics in the agricultural sector. Cluster analysis in this research uses the Self-organizing Maps (SOM) method. Before cluster analysis is carried out, Principal Component Analysis (PCA) is carried out to reduce the dimensions of the variables so that the data is easier to process and avoids the curse of dimensionality. The PCA results obtained 2 main components formed from 9 agricultural sector variables, which were then used as input data for clustering analysis with SOM. The results of clustering with SOM showed that the optimal number of provincial groups was 3 with a Davies-Boulden Index (DBI) value of 0.544 and a Silhouette of 0.623. The results of grouping the provinces can then be categorized into cluster 1 with a high average value of agricultural sector variables, cluster 2 with a medium average value of agricultural sector variables, and cluster 3 with a low average value of agricultural sector variables.
Preventing recession through GDP growth prediction: A classical and machine learning classification approach Saputri, Prilyandari Dina; Angrenani, Arin Berliana; Fitriana, Ika Nur Laily
Data Science: Journal of Computing and Applied Informatics Vol. 7 No. 2 (2023): Data Science: Journal of Computing and Applied Informatics (JoCAI)
Publisher : Talenta Publisher

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.32734/jocai.v7.i2-10507

Abstract

Classification methods are a popular method applied in many various fields of science. To represent the effect of predictor factors on categorical response variables, different machine learning classification algorithms are used, namely logistic regression, neural network (NN), random forest, support vector machine (SVM), and bayesian model averaging (BMA). Every classifier has its unique characteristic, performing well in certain datasets but not in others. Hence, it is always a quest to find the best classifier to use for a certain dataset. Economic growth, most commonly using a gross regional domestic product, is experiencing a recession or acceleration, especially before and during the COVID-19 pandemic. This research proposed a comparison of classification methods using regional GDP data for 2019-2020, before and during the COVID-19 pandemic, by predictor variables; percentage of workers, foreign direct investment (PMA), regional revenue (PAD), general allocation fund (DAU), revenue sharing fund (DBH), and the dummy of COVID-19. The results are that all selected machine learning models can classify the regional GDP growth perfectly for the training data, but, NN model outperforms the other methods with an accuracy of 100% in training and testing data. COVID-19 and the PMA are the most significant variables predicting regional GDP growth for all models. Further research relating to interpretable machine learning, such as feature interaction, global surrogate, and Shapley values, is also necessary to predict regional GDP growth using machine learning methods.
Feature Selection pada Indikator Indeks Ekonomi Hijau di Indonesia dengan Machine Learning Leviany, Fonda; Fitriana, Ika Nur Laily; Amin, Nurul Nisa’a
SENTRI: Jurnal Riset Ilmiah Vol. 4 No. 9 (2025): SENTRI : Jurnal Riset Ilmiah, September 2025
Publisher : LPPM Institut Pendidikan Nusantara Global

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.55681/sentri.v4i9.4615

Abstract

Green economy policies are crucial for all countries to ensure that economic activities progress while preserving environmental sustainability. The success of such policies is measured by the Green Economy Index, which in 2020 recorded a national score of 59.17 with 15 indicators, while provincial-level indicators are still being developed. This study analyzes 18 provincial indicators to identify the main factors influencing the Green Economy Index using LASSO regression. This method was chosen for its ability to efficiently perform feature selection, address multicollinearity, and reduce overfitting risks. The dataset includes 18 indicators and index values from 34 provinces. The results show that 15 indicators significantly affect the index. The developed model demonstrates good performance with an RMSE of 1.23 for the training set and 2.29 for the testing set. The R² values of 95.6% (training) and 85.98% (testing) indicate strong predictive capability. Moreover, surface water quality is identified as the most influential indicator. These findings are expected to support data-driven policymaking in strengthening the green economy at the provincial level.