Jurnal Taguchi : Jurnal Ilmiah Teknik dan Manajemen Industri
Vol. 3 No. 1 (2023): Jurnal Taguchi : Jurnal Ilmiah Keilmuan Teknik dan Manajemen Industri

ANALISIS PENGARUH PENGURANGAN DIMENSI DATA PADA KEAKURATAN PREDIKSI PENYAKIT JANTUNG DENGAN MENGGUNAKAN SVM LINEAR

Akhmad Ghiffary Budianto (Universitas Lambung Mangkurat)
Akhmad Syarief (Universitas Lambung Mangkurat)



Article Info

Publish Date
27 Jul 2023

Abstract

Heart disease is a disorder in the form of plaque that occurs in large blood vessels. This disrupts the supply of oxygen to the organs of the body. Heart disease is 1 of the 3 most common causes of death worldwide. Therefore, early detection based on the examination of medical data is needed to prevent the impact. The method used for classification is Support vector machine (SVM) and dimension reduction is Principal component analysis (PCA). The dataset is from Kaggle, medical records of 299 patients with 12 features and 1 label. The results obtained are the level of accuracy of PCA 6 features and without PCA both produce 82.9% and a total of 51 misclassifications. The processing time required is slightly longer for PCA 6 features (0.69121 seconds) than without PCA (0.46173 seconds). Because it has the same level of accuracy, the f-score metric is used to assess the classification model. The SVM with PCA 6 features has an f-score of 0.879, this is slightly better than SVM without PCA, which is 0.878

Copyrights © 2023






Journal Info

Abbrev

home

Publisher

Subject

Chemical Engineering, Chemistry & Bioengineering Civil Engineering, Building, Construction & Architecture Control & Systems Engineering Electrical & Electronics Engineering Engineering Industrial & Manufacturing Engineering

Description

Taguchi Adalah Jurnal Ilmiah Keilmuan Teknik dan Manajemen Industri terbit secara daring pada bulan Juni dan Desember. untuk menyebarluaskan hasil-hasil penelitian dalam bidang keilmuan Teknik dan Manajemen Industri sesuai dengan Body Knowledge pada Teknik ...