JOURNAL OF INFORMATION SYSTEM RESEARCH (JOSH)
Vol 4 No 4 (2023): Juli 2023

Analisis Sentimen Twitter Terhadap Program MBKM Menggunakan Decision Tree dan Support Vector Machine

Lita Astri Pramesti (Universitas Muhammadiyah Prof. Dr. Hamka, Jakarta)
Nunik Pratiwi (Universitas Muhammadiyah Prof. Dr. Hamka, Jakarta)



Article Info

Publish Date
26 Jul 2023

Abstract

The purpose of this research is to analyze Twitter users' opinions on the MBKM program using Decision Tree and Support Vector Machine. The study utilized 849 data with a dataset ratio of 80% for training and 20% for testing. In the dataset, there were 524 instances of positive sentiment and 320 instances of negative sentiment. This indicates that Twitter users' opinions towards the MBKM program tend to be positive. The research evaluation results showed that the Support Vector Machine achieved an accuracy of 84.76%, which is higher than the accuracy of 72.86% obtained by the Decision Tree. Based on these results, it can be concluded that the Support Vector Machine algorithm outperforms the Decision Tree in sentiment analysis of the MBKM program. The findings of this research are expected to provide input for the development of the program.

Copyrights © 2023






Journal Info

Abbrev

josh

Publisher

Subject

Computer Science & IT Decision Sciences, Operations Research & Management

Description

Artikel yang dimuat melalui proses Blind Review oleh Jurnal JOSH, dengan mempertimbangkan antara lain: terpenuhinya persyaratan baku publikasi jurnal, metodologi riset yang digunakan, dan signifikansi kontribusi hasil riset terhadap pengembangan keilmuan bidang teknologi dan informasi. Fokus Journal ...