International Journal of Electrical and Computer Engineering
Vol 13, No 6: December 2023

A novel wind power prediction model using graph attention networks and bi-directional deep learning long and short term memory

Mansoury, Ibtissame (Unknown)
Bourakadi, Dounia El (Unknown)
Yahyaouy, Ali (Unknown)
Boumhidi, Jaouad (Unknown)



Article Info

Publish Date
01 Dec 2023

Abstract

Today, integrating wind energy forecasting is an important area of research due to the erratic nature of wind. To achieve this goal, we propose a new model of wind speed prediction based on graph attention networks (GAT), we added a new attention mechanism and a learnable adjacency matrix to the GAT structure to obtain attention scores for each weather variable. The results of the GAT-based model are merged with the bi-directional deep learning long and short-term memory (BiLSTM) layer to take advantage of the geographic and temporal properties of historical weather data. The experiments and analyzes are carried out using precise meteorological data collected from wind farms in the Moroccan city of Tetouan. We show that the proposed model can learn complex input-output correlations of meteorological data more efficiently than previous wind speed prediction algorithms. Due to the resulting attention weights, the model also provides more information about the main weather factors for the evaluated forecast work.

Copyrights © 2023






Journal Info

Abbrev

IJECE

Publisher

Subject

Computer Science & IT Electrical & Electronics Engineering

Description

International Journal of Electrical and Computer Engineering (IJECE, ISSN: 2088-8708, a SCOPUS indexed Journal, SNIP: 1.001; SJR: 0.296; CiteScore: 0.99; SJR & CiteScore Q2 on both of the Electrical & Electronics Engineering, and Computer Science) is the official publication of the Institute of ...