Science in Information Technology Letters
Vol 3, No 1 (2022): May 2022

Factors Influencing open unemployment rates: a spatial regression analysis

Purwaningsih, Tuti (Unknown)
Inderanata, Rochmad Novian (Unknown)
Pradana, Sendhyka Cakra (Unknown)
Snani, Aissa (Unknown)
Sulaiman, Sarina (Unknown)



Article Info

Publish Date
30 May 2022

Abstract

The present study employed spatial regression analysis as a methodological approach to get insights into the unemployment rates across Indonesian provinces in the year 2016. The official website of the Bureau of Labor Statistics (BPS) offers secondary data pertaining to several socio-economic indicators, including the Total Open Unemployment Rate, Economic Growth Rate, Human Development Index, Severity of Poverty Index, and School Participation Rates. The investigation employed the Geoda software package and encompassed Ordinary Least Squares (OLS) regression, Dependency/Correlation investigation, and Spatial Autoregressive Model. The data presented in the study revealed the existence of three distinct provincial groupings characterized by varying levels of unemployment rates. In the context of unemployment variance, the traditional regression model accounted for 30 percent of the observed variation. However, the spatial regression model used spatial dependencies to enhance accuracy in capturing the phenomenon. The aforementioned findings have the potential to assist policymakers in formulating strategies to address unemployment in regions characterized by distinct spatial attributes, hence offering a potential blueprint for other nations.

Copyrights © 2022






Journal Info

Abbrev

sitech

Publisher

Subject

Computer Science & IT

Description

Science in Information Technology Letters (SITech) aims to keep abreast of the current development and innovation in the area of Science in Information Technology as well as providing an engaging platform for scientists and engineers throughout the world to share research results in related ...