Jurnal Edukasi dan Penelitian Informatika (JEPIN)
Vol 9, No 2 (2023): Volume 9 No 2

Klasifikasi Indeks Kedalaman Kemiskinan Provinsi Sulawesi Selatan Berbasis Decision Tree, K-Nearest Neighbor, Naive Bayes, Neural Network, dan Random Forest

Muhammad Faozan Mulad Khalik (Universitas Negeri Yogyakarta)
Fatchul Arifin (Universitas Negeri Yogyakarta)



Article Info

Publish Date
24 Aug 2023

Abstract

Penelitian ini bertujuan untuk mendapatkan klasifikasi indeks kedalaman kemiskinan dengan metode terbaik untuk kabupaten/kota di Provinsi Sulawesi Selatan dengan membandingkan metode Decision Tree, K-Nearest Neighbor, Naïve Bayes, Neural Network, dan Random Forest. Penelitian ini menggunakan metode kuantitatif dengan menggunakan data sekunder yang diperoleh dari situs resmi Badan Pusat Statistik Provinsi Sulawesi Selatan. Pada penelitian ini digunakan 168 data latih yang bersumber dari data tahun 2014 sampai dengan data tahun 2021, kemudian untuk data uji yang digunakan yaitu 24 data yang bersumber dari data tahun 2022. Hasil dari penelitian ini menunjukkan bahwa metode K-NN dan Neural Network memperoleh performa paling tinggi dibandingkan dengan metode lain tingkat akurasi 79,17%, precission 85,71%, recall 80%. Namun pada penilaian parameter AUC, metode Neural Network lebih unggul dibandingkan metode K-NN dengan skor AUC 0,837. Sehingga dapat disimpulkan bahwa metode Neural Network ini dapat dijadikan sebagai metode untuk melakukan klasifikasi indeks kedalaman kemiskinan kabupaten/kota Provinsi Sulawesi Selatan.

Copyrights © 2023






Journal Info

Abbrev

jepin

Publisher

Subject

Computer Science & IT Education

Description

Jurnal Edukasi dan Penelitian Informatika (JEPIN) merupakan peer reviewed journal di bidang informatika. Jurnal ini diterbitkan 3 bulan dalam setahun (April, Agustus, dan Desember) oleh Program Studi Informatika, Fakultas Teknik, Universitas Tanjungpura, ...