Prosiding Seminar Nasional Official Statistics
Vol 2023 No 1 (2023): Seminar Nasional Official Statistics 2023

Pemanfaatan Data Citra Satelit Untuk Memprediksi Produksi Padi Tahun 2018-2022 dengan Membandingkan Metode Machine Learning dan Ekonometrik

Hidayat, Arief Ramadhan Rifky (Unknown)
Parina, Okta (Unknown)
Kurniawan, Robert (Unknown)



Article Info

Publish Date
04 Oct 2023

Abstract

This study aims to evaluate and compare the prediction accuracy of rice production in East Java in 2018-2022 using three methods namely Support Vector Regression (SVR), Autoregressive Integrated Moving Average With Exogenous Variable (ARIMAX), and Autoregressive Distributed Lag (ARDL). The dependent variable is rice production with the independent variables Normalized Difference Water Index (NDWI), Soil Adjusted Vegetation Index (SAVI), and Farmer's Exchange Rate (NTP) derived from satellite imagery and the Central Bureau of Statistics. The best model of this research is SVR with Radial Basis Function (RBF) because it has Mean Absolute Percentage Error (MAPE) and Mean Squared Error (MSE) values of 35.42% and 46.93. The parameters cost (C), gamma (γ), epsilon (ε), and number of support vectors used in the SVR model are 1; 0.33; 0.1; and 43. SAVI is the variable that best describes rice production because it has the same distribution pattern and is the only significant variable in the long-term model.

Copyrights © 2023






Journal Info

Abbrev

semnasoffstat

Publisher

Subject

Humanities Computer Science & IT Economics, Econometrics & Finance Social Sciences

Description

prosiding seminar ini bertujuan untuk menghasilkan berbagai pemikiran solutif, inovatif, dan adaptif terkait isu, strategi, dan metode yang memanfaatkan official ...