Pandemi COVID-19 merupakan peristiwapersebaran penyakit yang terjadi di seluruh dunia. Berbagainegara telah berupaya untuk memberhentikan pergerakanvirus tersebut agar tidak terjadi gelombang akibat virus yangberevolusi dan melahirkan varian baru. Pada umumnya, datapersebaran dari suatu wilayah sangat diperlukan oleh parapraktisi Kesehatan untuk meneliti lajur dan kemungkinanterjadinya gelombang ataupun ditemukannya varian baru darivirus SARS-Cov-2. Penelitian ini bertujuan untuk menganalisapersebaran varian COVID-19 di kelurahan Antapani Kidul,kota Bandung dari segala aspek perbedaan dari setiapvariannya.Metode dalam penelitian ini yaitu menggunakan teknikclustering dengan penggunaan alur data mining yangmenerapkan algoritma K-Means. Algoritma K- Meansmenggunakan dataset yang digunakan untuk mengelompokandata berdasarkan kriteria pendukung berupa tingkatpenularan, tingkat transmisi komunitas, dan juga sejumlahdampaknya pada imunitas pasien pengidap COVID- 19.Dalam penelitian ini juga diukur akurasi dari performansimetode clustering menggunakan algoritma K-Means denganmembandingkannya dengan empat metode lain, yaituDBSCAN, Gaussian Mixture, Agglomerative Clustering, danSpectral Clustering dengan menggunakan tabel PerformanceMetrics dengan empat parameter pengukuran yang disebutmain metrics, yang merupakan Silhouette Score, Calinski-Harbasz Index, Davies Bouldien Index, dan Rand Index.Kata kunci: COVID-19, Varian, Algoritma K-Means,Clustering, Kriteria, Persebaran, Performance Metrics.
                        
                        
                        
                        
                            
                                Copyrights © 2023