Beras merupakan salah satu bahan pangan serealiayang paling banyak dikonsumsi oleh masyarakat Asia,termasuk di Indonesia. Setiap beras memiliki kemiripanbentuk bulir dan warna yang relatif hampir sama, sehinggaproses mengidentifikasi jenis beras secara visual dinilai masihcukup sulit, dan untuk mengurangi kemungkinan terjadinyahuman error. Oleh karena itu, pengolahan citra digital dapatdigunakan dalam melakukan klasifikasi jenis berasmenggunakan metode Convolutional Neural Network (CNN)dengan arsitektur Residual Network (ResNet-50).Dataset yang digunakan dalam penelitian ini berjumlah 2500citra yang diperoleh dari website Kaggle, berupa citra bulirberas putih yang terdiri dari 5 kelas yaitu Arborio, Basmati,Ipsala, Jasmine, dan Karacadag. Tahapan diawali denganmelakukan preprocessing yaitu resize ukuran citra dannormalisasi citra, lalu dilakukan pembagian dataset sebagaidata latih dan data uji. kemudian selanjutnya dilakukanekstraksi ciri dan klasifikasi menggunakan kombinasihyperparameter input size, optimizer, learning rate, danbatch size untuk mendapatkan hasil model terbaik.Kemudian di tahap akhir hasil akan dianalisis denganparameter akurasi dan loss.Melalui penelitian ini diperoleh hasil akhir pengujian terbaikpada penggunaan parameter input size 64×64 piksel,optimizer Adam, learning rate 0,001, dan batch size 64,dengan hasil validation accuracy sebesar 98,20% dan loss0,1109.Kata Kunci: jenis beras, CNN, ResNet-50.
                        
                        
                        
                        
                            
                                Copyrights © 2023