Tematik : Jurnal Teknologi Informasi Komunikasi
Vol. 10 No. 2 (2023): Tematik : Jurnal Teknologi Informasi Komunikasi (e-Journal) - Desember 2023

Penghindaran Rintangan Otomatis Pada Agen Otonom Berbasis End-to-End Deep Imitation Learning

Supeno, Handoko (Unknown)
Muhammad Tirta Mulia (Unknown)
Mellia Liyanthy (Unknown)
Kevin Anggara Putra (Unknown)
Fauzan Nursalma Mawardi (Unknown)



Article Info

Publish Date
17 Dec 2023

Abstract

This research addresses the issue of automatic obstacle avoidance during navigation by autonomous agents. Designing a traditional, programmed automatic obstacle avoidance system would be difficult and expensive. Therefore, a neural network-based approach is proposed, known as end-to-end deep imitation learning, where the approach is data-driven and thus relatively easier and more cost-effective compared to traditional methods. The research also proposes the architecture of a convolutional neural network design and image processing techniques for effective and efficient machine learning training. Testing is conducted on a path with randomly placed obstacles in the Webots simulator. Gradual performance evaluations demonstrate that the proposed architecture successfully trains autonomous agents to maneuver when encountering dynamic obstacles with a relatively small training dataset.

Copyrights © 2023






Journal Info

Abbrev

tematik

Publisher

Subject

Computer Science & IT

Description

TEMATIK - Jurnal Teknologi Informasi Dan Komunikasi merupakan jurnal ilmiah sebagai bentuk pengabdian dalam hal pengembangan bidang Teknologi Informasi Dan Komunikasi serta bidang terkait lainnya. TEMATIK - Jurnal Teknologi Informasi Dan Komunikasi diterbitkan oleh LPPM dan Program Studi Manajemen ...