Jurnal Nasional Teknologi Informasi dan Aplikasinya
Vol 2 No 1 (2023): JNATIA Vol. 2, No. 1, November 2023

Implementasi Random Forest Pada Klasifikasi Penyakit Kardiovaskular dengan Hyperparameter Tuning Grid Search

Jayaditya, I Ketut Adian (Unknown)
Kadyanan, I Gusti Agung Gede Arya (Unknown)



Article Info

Publish Date
03 Nov 2023

Abstract

Cardiovascular disease have the potential to cause death if not treated right, because it interferes with the function of the heart. Machine Learning algorithm can be used to do early diagnosis of cardiovascular disease to lower the risk of death. In this study, the classification of cardiovascular disease uses the Random Forest algorithm to determine whether a person has cardiovascular disease or not. Grid Search is also used to do hyperparameter tuning to find the optimal hyperparameter for the Random Forest algorithm. The performance results of the classification model using Random Forest with Grid Search are 73.06% in accuracy, 75.15% in precision, 68.72% in recall, and 71.79% in f1-score. Keywords: Cardiovascular Disease, Random Forest, Hyperparameter Tuning, Grid Search

Copyrights © 2023






Journal Info

Abbrev

jnatia

Publisher

Subject

Computer Science & IT

Description

JNATIA (Jurnal Nasional Teknologi Informasi dan Aplikasinya) merupakan jurnal yang berfokus pada teori, praktik dan metodologi seluruh aspek teknologi di bidang ilmu dan teknik komputer serta ide-ide produktif dan inovatif terkait teknologi baru dan sistem informasi. Jurnal ini memuat makalah ...