Jurnal Nasional Teknologi Informasi dan Aplikasinya
Vol 1 No 3 (2023): JNATIA Vol. 1, No. 3, Mei 2023

Isolation Forest dengan Exploratory Data Analysis pada Anomaly Detection untuk Data Transaksi

Taksa Wibawa, I Made Sudarsana (Unknown)
Karyawati, Anak Agung Istri Ngurah Eka (Unknown)



Article Info

Publish Date
17 Jul 2023

Abstract

Managing value of data is one of the key aspects of presenting analysis for decision making support in various cases. One of such method is by managing detecting anomaly in the data. This research focuses on implementing Isolation Forest result of anomaly detection. This method is used on transaction dataset from Kaggle with about more than 500.000 records. The result this research shows that Isolation Forest used in the dataset have 0.899 in accuracy, 0.00649 in precision, 0.504 in recall, and 0.013 in F1 score. Keywords: Isolation Forest, iForest, Anomaly Detection

Copyrights © 2023






Journal Info

Abbrev

jnatia

Publisher

Subject

Computer Science & IT

Description

JNATIA (Jurnal Nasional Teknologi Informasi dan Aplikasinya) merupakan jurnal yang berfokus pada teori, praktik dan metodologi seluruh aspek teknologi di bidang ilmu dan teknik komputer serta ide-ide produktif dan inovatif terkait teknologi baru dan sistem informasi. Jurnal ini memuat makalah ...