Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi)
Vol 7 No 6 (2023): December 2023

Ekstraksi Fitur untuk Peningkatan Klasifikasi Teks Komentar Video Youtube Spam Menggunakan Deep Learning

Jasmir, Jasmir (Unknown)
Riyadi, Willy (Unknown)
Jusia, Pareza Alam (Unknown)



Article Info

Publish Date
26 Dec 2023

Abstract

The proposed algorithms are Bidirectional Long Short Term Memory (BiLSTM) and Conditional Random Fields (CRF) with Data Augmentation Technique (DAT). DAT integrates spam YouTube video comments into the traditional TF-IDF algorithm and generates a weighted word vector. The weighted word vector is fed into BiLSTM CRF to capture context information effectively. The result of this study is a new classification model to spam YouTube comment videos and increase the computational value of its performance. This research conducted two experiments: the first using BiLSTM CRF without DAT and the second using BiLSTM CRF with DAT. The experimental results state that the evaluation score using BiLSTM CRF with DAT shows outstanding performance in text classification, especially in spam YouTube video comment texts, with accuracy = 83.3%, precision = 83.6%, recall = 83.3%, and F-measure = 83.3%. So the combination of the BiLSTM-CRF method and the Data Augmentation Technique is very precise, so it can be used to increase the accuracy of classification texts for spam YouTube video comments

Copyrights © 2023






Journal Info

Abbrev

RESTI

Publisher

Subject

Computer Science & IT Engineering

Description

Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) dimaksudkan sebagai media kajian ilmiah hasil penelitian, pemikiran dan kajian analisis-kritis mengenai penelitian Rekayasa Sistem, Teknik Informatika/Teknologi Informasi, Manajemen Informatika dan Sistem Informasi. Sebagai bagian dari semangat ...