Salah satu metode analisis yang banyak digunakan dalam penelitian adalah analisis regresi linier. Pada kasus regresi sederhana, pola hubungan linier diterapkan untuk satu variabel bebas dan satu variabel terikat. Sedangkan pada kasus regresi berganda, pola hubungan linier diterapkan untuk satu variabel bebas dengan beberapa variabel terikat. Pada tahapan analisis regresi, terdapat beberapa asumsi yang wajib untuk dipenuhi. Beberapa asumsi tersebut yakni asumsi normalitas, linearitas, heterokedastisitas, autokorelasi, dan multikolinearitas. Metode principal component analysis atau PCA merupakan suatu teknik multivariat yang bertujuan untuk mereduksi faktor atau variabel dalam jumlah besar menjadi beberapa faktor yang lebih sedikit. Selain digunakan untuk mereduksi jumlah variabel, metode PCA juga dapat digunakan untuk menangani masalah multikolinearitas dengan mereduksi jumlah variabelnya. Tujuan penulisan jurnal ini yakni untuk melakukan penanganan pada pelanggaran asumsi multikolinearitas tanpa melakukan reduksi jumlah variabel. Hasil dari penelitian ini adalah bahwa metode PCA layak untuk digunakan dalam menangani masalah pelanggaran asumsi multikolinearitas tanpa melakukan reduksi terhadap jumlah variabel awal. Sehingga keseluruhan informasi yang terkandung pada masing-masing variabel dapat tetap dipertahankan.
Copyrights © 2023