Malcom: Indonesian Journal of Machine Learning and Computer Science
Vol. 4 No. 2 (2024): MALCOM April 2024

Perbandingan Algoritma SVM dan Naïve Bayes dalam Analisis Sentimen Twitter pada Penggunaan Mobil Listrik di Indonesia : Comparison of Naive Bayes and SVM Algorithms in Twitter Sentiment Analysis on Electric Car Use in Indonesia

Ningsih, Widia (Unknown)
Alfianda, Baginda (Unknown)
Rahmaddeni, Rahmaddeni (Unknown)
Wulandari, Denok (Unknown)



Article Info

Publish Date
29 Feb 2024

Abstract

Analisis sentimen dapat mengklasifikasikan sentimen berdasarkan polaritas teks dalam sebuah frasa dan menentukannya sebagai sentimen positif, negatif, atau netral. Data sentimen ini diperoleh dari jejaring sosial Twitter berdasarkan kueri bahasa Indonesia. Tujuan dari penelitian ini adalah untuk memahami opini publik mengenai topik tertentu yang dikomunikasikan di Twitter dalam bahasa Indonesia dan untuk mendukung upaya melakukan riset pasar terhadap opini publik. Data yang dikumpulkan melalui proses pelabelan manual, preprocessing, dan pemodelan, dan model klasifikasi dibuat melalui proses pelatihan. Teknik pengumpulan data dilakukan dengan mencari catatan menggunakan istilah pencarian “kendaraan listrik” di website Kaggle.com. Algoritma yang digunakan untuk membangun model klasifikasi berdasarkan data yang diperoleh pada penelitian ini adalah Algoritma Naive Bayes dan Support Vector Machine. Nilai akurasi implementasi klasifikasi yang diperoleh algoritma Naive Bayes sebesar 63,02% dan akurasi support vector machine sebesar 70,82%. Dapat disimpulkan bahwa algoritma support vector machine mempunyai nilai akurasi yang paling tinggi.

Copyrights © 2024






Journal Info

Abbrev

malcom

Publisher

Subject

Computer Science & IT

Description

MALCOM: Indonesian Journal of Machine Learning and Computer Science is a scientific journal published by the Institut Riset dan Publikasi Indonesia (IRPI) in collaboration with several Universities throughout Riau and Indonesia. MALCOM will be published 2 (two) times a year, April and October, each ...