KLIK: Kajian Ilmiah Informatika dan Komputer
Vol. 4 No. 5 (2024): April 2024

Implementation of SVM and DT for Sentiment Classification: Tempel Hamlet Content Reviews

Yerik Afrianto Singgalen (Universitas Katolik Indonesia Atma Jaya, Jakarta)



Article Info

Publish Date
30 Apr 2024

Abstract

The study aims to investigate the effectiveness of sentiment analysis algorithms, specifically Support Vector Machine (SVM) and Decision Tree (DT), integrated with the Synthetic Minority Over-sampling Technique (SMOTE) to mitigate class imbalance issues. Guided by the Cross-Industry Standard Process for Data Mining (CRISP-DM) framework, the research involves several stages: Business Understanding, Data Understanding, Data Preparation, Modeling, Evaluation, and Deployment. The process begins with understanding the business objectives of sentiment analysis and proceeds to explore and prepare the dataset for analysis. SVM and DT algorithms, enhanced with SMOTE, are then implemented for sentiment classification. The study reveals promising results in sentiment analysis tasks. When integrated with SMOTE, SVM achieves an accuracy of 99.21%, while DT attains an accuracy of 98.33%. The Area Under the Curve (AUC) metrics indicate high confidence in classifying positive instances, with SVM and DT demonstrating AUC scores of 1.000 and 0.996, respectively. These findings underscore the efficacy of SVM and DT algorithms, enhanced with SMOTE, in accurately classifying sentiment within text data, thereby addressing class imbalance issues effectively

Copyrights © 2024






Journal Info

Abbrev

klik

Publisher

Subject

Computer Science & IT

Description

Topik utama yang diterbitkan mencakup: 1. Teknik Informatika 2. Sistem Informasi 3. Sistem Pendukung Keputusan 4. Sistem Pakar 5. Kecerdasan Buatan 6. Manajemen Informasi 7. Data Mining 8. Big Data 9. Jaringan Komputer 10. Dan lain-lain (topik lainnya yang berhubungan dengan Teknologi Informati dan ...