Kesatria : Jurnal Penerapan Sistem Informasi (Komputer dan Manajemen)
Vol 4, No 1 (2023): Edisi Januari

Model Comparison of Random Forest and Logistic Regression Algorithms in PCOS Disease Detection

Khoirun Nisa (Universitas Harapan Bangsa, Purwokerto)
P Purwono (Universitas Harapan Bangsa, Purwokerto)
Bala Putra Dewa (Universitas Harapan Bangsa, Purwokerto)
Sony Kartika Wibisono (Universitas Harapan Bangsa, Purwokerto)



Article Info

Publish Date
17 Jan 2023

Abstract

PCOS or Polycystic Ovary Syndrome is a hormonal imbalance affecting egg cells' growth, making them remain small and not develop into large and mature egg cells to be fertilized by sperm cells. It is an endocrinopathy disease occurred in 10-15% of productive-aged women worldwide. The study aims to find the most suitable algorithm to be used in the optimization of PCOS detection. Thus, a performance comparison between random forest and logistic regression algorithms needs to be conducted in order to find the best performance in terms of accuracy. The research used a dataset containing 40 features. According to comparison results, the random forest algorithm was superior to logistic regression, with an accuracy of 91 %.

Copyrights © 2023






Journal Info

Abbrev

kesatria

Publisher

Subject

Computer Science & IT Control & Systems Engineering

Description

KESATRIA: Jurnal Penerapan Sistem Informasi (Komputer & Manajemen) adalah sebuah jurnal peer-review secara online yang diterbitkan bertujuan sebagai sebuah forum penerbitan tingkat nasional di Indonesia bagi para peneliti, profesional, Mahasiswa dan praktisi dari industri dalam bidang Ilmu ...