Journal of Computer Networks, Architecture and High Performance Computing
Vol. 6 No. 1 (2024): Article Research Volume 6 Issue 1, January 2024

Enhancing Multi-Layer Perceptron Performance with K-Means Clustering

Doughlas Pardede (Universitas Deli Sumatera)
Aulia Ichsan (Universitas Deli Sumatera)
Sugeng Riyadi (Universitas Deli Sumatera)



Article Info

Publish Date
18 Feb 2024

Abstract

Machine learning plays a crucial role in identifying patterns within data, with classification being a prominent application. This study investigates the use of Multilayer Perceptron (MLP) classification models and explores preprocessing techniques, particularly K-Means clustering, to enhance model performance. Overfitting, a common challenge in MLP models, is addressed through the application of K-Means clustering to streamline data preparation and improve classification accuracy. The study begins with an overview of overfitting in MLP models, highlighting the significance of mitigating this issue. Various techniques for addressing overfitting are reviewed, including regularization, dropout, early stopping, data augmentation, and ensemble methods. Additionally, the complementary role of K-Means clustering in enhancing model performance is emphasized. Preprocessing using K-Means clustering aims to reduce data complexity and prevent overfitting in MLP models. Three datasets - Iris, Wine, and Breast Cancer Wisconsin - are employed to evaluate the performance of K-Means as a preprocessing technique. Results from cross-validation demonstrate significant improvements in accuracy, precision, recall, and F1 scores when employing K-Means clustering compared to models without preprocessing. The findings highlight the efficacy of K-Means clustering in enhancing the discriminative power of MLP classification models by organizing data into clusters based on similarity. These results have practical implications, underlining the importance of appropriate preprocessing techniques in improving classification performance. Future research could explore additional preprocessing methods and their impact on classification accuracy across diverse datasets, advancing the field of machine learning and its applications

Copyrights © 2024






Journal Info

Abbrev

CNAPC

Publisher

Subject

Computer Science & IT Education

Description

Journal of Computer Networks, Architecture and Performance Computing is a scientific journal that contains all the results of research by lecturers, researchers, especially in the fields of computer networks, computer architecture, computing. this journal is published by Information Technology and ...