UNP Journal of Statistics and Data Science
Vol. 2 No. 2 (2024): UNP Journal of Statistics and Data Science

K-Modes Analysis with Validation of the DBI in Grouping Provinces in Indonesia based on Indicators of Poor Households

Syifa Azahra (Unknown)
Zilrahmi (Unknown)
Dodi Vionanda (Unknown)
Fadhilah Fitri (Unknown)



Article Info

Publish Date
31 May 2024

Abstract

Poverty is the most pressing social problem in Indonesia. Efforts to alleviate poverty are to group provinces in Indonesia based on indicators of poor households using the K-modes algorithm. The data used is data from the 2017 Indonesian Demographic and Health Survey (IDHS) on the Household List. The analysis includes data noise detection, data clustering using K-Modes algorithm, and cluster validation with Davies Bouildin Index (DBI). Based on the clustering that has been done, two clusters are obtained, where cluster 1 consists of 26 provinces and cluster 2 consists of 8 provinces. cluster 1 is a cluster that fulfills 9 indicators of poor households and cluster 2 only a few indicators of poor households. So that the government can prioritize these 8 provinces to overcome poverty in Indonesia. For the DBI value obtained is 1.89 which means that 2 clusters are already well used in the algorithm.

Copyrights © 2024






Journal Info

Abbrev

ujsds

Publisher

Subject

Computer Science & IT Decision Sciences, Operations Research & Management Mathematics Social Sciences

Description

UNP Journal of Statistics and Data Science is an open access journal (e-journal) launched in 2022 by Department of Statistics, Faculty of Science and Mathematics, Universitas Negeri Padang. UJSDS publishes scientific articles on various aspects related to Statistics, Data Science, and its ...