Journal of Student Research Exploration
Vol. 2 No. 1: January 2024

Email spam detection: a comparison of svm and naive bayes using bayesian optimization and grid search parameters

Budiman, Dzaky (Unknown)
Zayyan, Zayyan (Unknown)
Mardiana, Ainun (Unknown)
Mahrani, Alfira Aulia (Unknown)



Article Info

Publish Date
31 Jan 2024

Abstract

Spam emails are still a big problem, crowding out inboxes and annoying email users everywhere. SVM and Naive Bayes are frequently used algorithms that have demonstrated excellent performance in performing text classification, including spam detection. The purpose of this study is to evaluate the overall performance of SVM and Naive Bayes in the context of detecting spam emails using default parameters. This research utilizes Bayesian Optimization and Grid Search Parameters for both SVM and Naive Bayes models to help maximize the performance of the constructed models. This study uses a spam email dataset that has 2 sample groups, namely spam and ham. Of the three parameter selection methods that have been tested on the SVM Algorithm, Bayesian Optimization is a parameter tuning method that has the most satisfying results in accuracy, precision, recall, and f1 scores respectively with values of 98.5642%, 99.4048%, 89.

Copyrights © 2024






Journal Info

Abbrev

josre

Publisher

Subject

Computer Science & IT Decision Sciences, Operations Research & Management Electrical & Electronics Engineering

Description

The Journal of Student Research Exploration aim publishes articles concerning the design and implementation of computer engineering, information system, data models, process models, algorithms, and software for information systems. Subject areas include data management, data mining, machine ...