Stunting adalah masalah pertumbuhan pada anak-anak, menjadi perhatian serius di Indonesia dan global, dengan lebih dari 149 juta balita terdampak, termasuk 6,3 juta di Indonesia. Meski ada penurunan, mencapai target nasional 2024 masih menantang. Pemerintah telah mengeluarkan Peraturan Presiden untuk menangani stunting, fokus pada gizi keluarga dan kebersihan lingkungan. Penelitian ini bertujuan memprediksi prevalensi stunting, mengembangkan model prediksi yang lebih akurat, memberikan dasar kebijakan, dan berkontribusi pada literatur ilmiah mengenai stunting di Indonesia. Metode yang digunakan adalah membandingkan Algoritma Neural Network (NN), RBF Network, SVR kernel RBF, dan Ordinary Least Square (OLS). Evaluasi menunjukkan variasi kinerja signifikan Linear Regression menunjukkan nilai MAE sebesar 0.93 dan MSE sebesar 1.34, sementara SVR memiliki nilai MAE sebesar 0.91 dan MSE sebesar 1.30. Sebaliknya, OLS menampilkan kinerja terbaik dengan nilai MAE sebesar 0.020390, MSE sebesar 0.000816, RMSE sebesar 0.028561, R2 sebesar 0.923281, dan MAPE sebesar 0.044035. Hal ini menunjukkan bahwa OLS memberikan prediksi yang sangat akurat dengan kesalahan yang minimal dan korelasi yang tinggi, menjadikannya metode yang unggul dalam memprediksi prevalensi stunting.
Copyrights © 2024