Alva Hendi Muhammad
Universitas Amikom Yogyakarta, Indonesia

Published : 3 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 3 Documents
Search

Prediksi Prevalensi Stunting di Indonesia dengan Ordinary Least Square (OLS) Benny Putra; Alva Hendi Muhammad
G-Tech: Jurnal Teknologi Terapan Vol 8 No 3 (2024): G-Tech, Vol. 8 No. 3 Juli 2024
Publisher : Universitas Islam Raden Rahmat, Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33379/gtech.v8i3.4623

Abstract

Stunting adalah masalah pertumbuhan pada anak-anak, menjadi perhatian serius di Indonesia dan global, dengan lebih dari 149 juta balita terdampak, termasuk 6,3 juta di Indonesia. Meski ada penurunan, mencapai target nasional 2024 masih menantang. Pemerintah telah mengeluarkan Peraturan Presiden untuk menangani stunting, fokus pada gizi keluarga dan kebersihan lingkungan. Penelitian ini bertujuan memprediksi prevalensi stunting, mengembangkan model prediksi yang lebih akurat, memberikan dasar kebijakan, dan berkontribusi pada literatur ilmiah mengenai stunting di Indonesia. Metode yang digunakan adalah membandingkan Algoritma Neural Network (NN), RBF Network, SVR kernel RBF, dan Ordinary Least Square (OLS). Evaluasi menunjukkan variasi kinerja signifikan Linear Regression menunjukkan nilai MAE sebesar 0.93 dan MSE sebesar 1.34, sementara SVR memiliki nilai MAE sebesar 0.91 dan MSE sebesar 1.30. Sebaliknya, OLS menampilkan kinerja terbaik dengan nilai MAE sebesar 0.020390, MSE sebesar 0.000816, RMSE sebesar 0.028561, R2 sebesar 0.923281, dan MAPE sebesar 0.044035. Hal ini menunjukkan bahwa OLS memberikan prediksi yang sangat akurat dengan kesalahan yang minimal dan korelasi yang tinggi, menjadikannya metode yang unggul dalam memprediksi prevalensi stunting.
Optimalisasi Akurasi Algoritma C4.5 dengan Metode Adaptive Boosting Memprediksi Siswa dalam Menerima Dana Pendidikan Wahyu Aji Tri Riswandhana; Alva Hendi Muhammad
G-Tech: Jurnal Teknologi Terapan Vol 8 No 4 (2024): G-Tech, Vol. 8 No. 4 Oktober 2024
Publisher : Universitas Islam Raden Rahmat, Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.70609/gtech.v8i4.5612

Abstract

The importance of increasing accuracy for educational institutions in predicting the provision of educational financial assistance. To make decisions about who deserves education funding. Data processing on aid recipients can be processed into information. This study aims to improve the accuracy of the C4.5 algorithm by using adaboost to determine whether students deserve to receive educational assistance funds or not by comparing the results before and after implementing adaboost. Predicting students' eligibility for obtaining educational assistance funds using decision trees. The dataset was collected from 414 students of SMK Muhammadiyah 1 Ngoro, used for this research. The research results show an increase in accuracy of 2.69% with the application of the C4.5 algorithm which has an accuracy of 77.31%, while the accuracy with the application of Adaboost reaches 80%.
Security Infrastructure Service and Information Security Management Capability Audit to Improve System Security in Preventing Cyber Attacks using COBIT 2019 Salim Salim; Alva Hendi Muhammad
G-Tech: Jurnal Teknologi Terapan Vol 9 No 1 (2025): G-Tech, Vol. 9 No. 1 January 2025
Publisher : Universitas Islam Raden Rahmat, Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.70609/gtech.v9i1.6319

Abstract

Cyber-attacks have become a serious concern in recent years, as hackers can attack systems, databases, and even steal personal data from a particular organization's database and sell it on the dark web. The individual identity data will be used to carry out various financially profitable activities such as online fraud, selling data containing detailed account information, and asking for ransom from data owners. The failure of an organization to protect data assets from cyber-attacks stems from several internal factors such as the vulnerability of the information security system it has, the less than optimal awareness of users in the organization of the importance of maintaining safe behavior in cyberspace, and routine processes related to information security that are missed. COBIT 2019 can be used as an audit framework to assess the level of maturity of the governance. Network infrastructure services in an organization can be measured in terms of the level of capability in terms of the application of technology assets and their configuration using the DSS05 and APO13 domains. This study aims to provide guidelines in assessing system security infrastructure in IT governance by assessing areas that are still not comply with the framework used, and providing recommendations for improving these inconsistencies so that the level of infrastructure capability will be maximized then.