Edumatsains
Vol 8 No 2 (2024): Januari

AN EXACT SYMPLECTIC STRUCTURE OF LOW DIMENSIONAL 2-STEP SOLVABLE LIE ALGEBRAS

Edi Kurniadi (Department of Mathematics of FMIPA of Universitas Padjadjaran)
Kankan Parmikanti (Departemen Matematika FMIPA Unpad)
Badrulfalah (Departemen Matematika FMIPA Unpad)



Article Info

Publish Date
02 Feb 2024

Abstract

In this paper, we study a Lie algebra equipped by an exact symplectic structure. This condition implies that the Lie algebra has even dimension. The research aims to identify and to contruct 2-step solvable exact symplectic Lie algebras of low dimension with explicit formulas for their one-forms and symplectic forms. For case of four-dimensional, we found that only one class among three classes is 2-step solvable exact symplectic Lie algebra. Furthermore, we also give more examples for case six and eight dimensional of Lie algebras with exact symplectic forms which is included 2-step solvable exact sympletic Lie algebras. Moreover, it is well known that a 2-step solvable Lie algebra equipped by an exact symplectic form is nothing but it is called a 2-step solvable Frobenius Lie algebra.

Copyrights © 2024






Journal Info

Abbrev

edumatsains

Publisher

Subject

Agriculture, Biological Sciences & Forestry Chemistry Education Mathematics Physics

Description

Jurnal EduMatSains merupakan wadah untuk menampung dan mempublikasikan hasil karya baik berupa hasil penelitian maupun kajian teori yang original dalam ruang lingkup pendidikan matematika dan pendidikan sains (fisika, kimia, biologi) serta ilmu matematika dan ilmu sains (fisika, kimia, biologi) bagi ...