The Indonesian Journal of Computer Science
Vol. 12 No. 4 (2023): The Indonesian Journal of Computer Science (IJCS)

Analisis Random Forest Menggunakan Principal Component Analysis Pada Data Berdimensi Tinggi

Diba, Farah (Unknown)
Lydia, Maya Silvi (Unknown)
Sihombing, Poltak (Unknown)



Article Info

Publish Date
30 Aug 2023

Abstract

Data yang memiliki dimensi tinggi membutuhkan metode machine learning yang mampu bekerja lebih cepat dan efektif dalam proses klasifikasi. Salah satu algoritma yang mampu menangani data kompleks adalah Random Forest. Random Forest bekerja dengan membangun beberapa decision tree secara random sebagai acuan feature selection. Namun, data berdimensi tinggi membutuhkan ruang penyimpanan yang lebih besar sehingga mengakibatkan lamanya proses komputasi. Oleh karena itu, Principal Component Analysis merupakan salah satu metode reduksi dimensi dalam merepresentasikan data berdimensi tinggi. PCA akan membentuk beberapa Principal Component yang mengandung informasi penting dari data asli. Dataset yang digunakan pada penelitian ini bersumber dari kaggle repository terdiri atas 26 atribut dan 129880 intances. Hasil dari penelitian ini RF dengan dengan n_estimators = 7 setelah direduksi PCA memiliki akurasi terbaik yaitu 90,13% pada data water quality.. Hal ini membuktikan bahwa PCA mampu mereduksi dimensi dengan membentuk pohon n_estimators sebanyak 7.

Copyrights © 2023






Journal Info

Abbrev

ijcs

Publisher

Subject

Computer Science & IT Electrical & Electronics Engineering Engineering

Description

The Indonesian Journal of Computer Science (IJCS) is a bimonthly peer-reviewed journal published by AI Society and STMIK Indonesia. IJCS editions will be published at the end of February, April, June, August, October and December. The scope of IJCS includes general computer science, information ...