The Indonesian Journal of Computer Science
Vol. 13 No. 1 (2024): The Indonesian Journal of Computer Science (IJCS)

Classification of flood disaster level news articles using Machine Learning

Rahmad Santosa (Unknown)
Arna Fariza (Unknown)
Firman Arifin (Unknown)



Article Info

Publish Date
19 Feb 2024

Abstract

Floods have a significant socio-economic impact on Indonesian society. Much of this information is sourced from online news articles and social media. This research investigates whether the Support Vector Machine (SVM) method can be used for flood disaster level classification (low, medium, and high). Our methodology involves preparing data extracted from textual news articles on the National Disaster Management Agency (BNPB) website on the topic of flooding. We then labeled the data according to Regulation No. 02/2012 on general guidelines for disaster assessment and used the Support Vector Machine (SVM) method. Training and testing were conducted using different datasets, followed by accuracy and error evaluation. In addition, we considered the performance comparison of SVM with other classification methods, including Decision Tree, Naive Bayes, Adaboost, Random Forest, and Xgboost. The experimental results show that SVM still does not get good accuracy results for flood disaster level classification. The SVM accuracy level result of (52%) is still low compared to Random Forest (78%), and Xgboost (68%). Further research is expected to increase the accuracy of SVM for flood level classification.

Copyrights © 2024






Journal Info

Abbrev

ijcs

Publisher

Subject

Computer Science & IT Electrical & Electronics Engineering Engineering

Description

The Indonesian Journal of Computer Science (IJCS) is a bimonthly peer-reviewed journal published by AI Society and STMIK Indonesia. IJCS editions will be published at the end of February, April, June, August, October and December. The scope of IJCS includes general computer science, information ...