The Indonesian Journal of Computer Science
Vol. 13 No. 1 (2024): The Indonesian Journal of Computer Science (IJCS)

Facial Beauty Standards Predictions Based on Machine Learning: A Comparative Analysis

Sadiq, Bareen Haval (Unknown)
Abdulazeez , Adnan M. (Unknown)



Article Info

Publish Date
06 Feb 2024

Abstract

This study uses a variety of machine learning and classification methods to anticipate the Facial Beauty Standards. The Accuracy of five different models—Random Forest, Logistic Regression, Support Vector Machine (SVM), KNN, and decision tree—were used to analyses each one. There were noticeable differences in the models' performances. In particular, the Logistic Regression and SVM methods demonstrate almost perfect accuracy, followed closely by random forest and KNN. This study gives insight into how well different models perform in comparison and emphasizes the benefits and drawbacks of each in terms of predicting face beauty standards.

Copyrights © 2024






Journal Info

Abbrev

ijcs

Publisher

Subject

Computer Science & IT Electrical & Electronics Engineering Engineering

Description

The Indonesian Journal of Computer Science (IJCS) is a bimonthly peer-reviewed journal published by AI Society and STMIK Indonesia. IJCS editions will be published at the end of February, April, June, August, October and December. The scope of IJCS includes general computer science, information ...