The Indonesian Journal of Computer Science
Vol. 13 No. 1 (2024): The Indonesian Journal of Computer Science (IJCS)

Leveraging of Gradient Boosting Algorithm in Misuse Intrusion Detection using KDD Cup 99 Dataset

Sulaiman , Sulaiman Muhammed (Unknown)
Abdulazeez, Adnan Mohsin (Unknown)



Article Info

Publish Date
06 Feb 2024

Abstract

This study addresses the persistent challenge of intrusion detection as a long-term cybersecurity issue. Investigating the efficacy of machine learning algorithms in anomaly and misuse detection. Research employs supervised learning for misuse detection and explain anomaly detection. Focused on adaptability and continual evolution the study explores the application of ensemble learning models AdaBoost, LightGBM, and XGBoost. Applying these algorithms in the context of intrusion detection. Utilizing the KDD Cup 99 dataset as a benchmark the paper assesses and compares the performance of these models. Besides, illuminating their effectiveness particularly in identifying smurf attacks within the cybersecurity landscape.

Copyrights © 2024






Journal Info

Abbrev

ijcs

Publisher

Subject

Computer Science & IT Electrical & Electronics Engineering Engineering

Description

The Indonesian Journal of Computer Science (IJCS) is a bimonthly peer-reviewed journal published by AI Society and STMIK Indonesia. IJCS editions will be published at the end of February, April, June, August, October and December. The scope of IJCS includes general computer science, information ...