This review delves into Facial Beauty Prediction (FBP) using deep learning, specifically focusing on convolutional neural networks (CNNs). It synthesizes recent advancements in the field, examining diverse methodologies and key datasets like SCUT-FBP and SCUT-FBP5500. The review identifies trends in FBP research, including the evolution of deep learning models and the challenges of dataset biases and cultural specificity. The paper concludes by emphasizing the need for more inclusive and balanced datasets and suggests future research directions to enhance model fairness and address ethical implications.
Copyrights © 2024