The Indonesian Journal of Computer Science
Vol. 13 No. 2 (2024): The Indonesian Journal of Computer Science (IJCS)

A Review of Heart Disease Classification Base on Machine Learning Algorithms

Hasan, Mayaf (Unknown)
Abdulazeez, Adnan Mohsin (Unknown)



Article Info

Publish Date
24 Apr 2024

Abstract

Heart disease is currently the leading cause of death. This problem is acute in developing countries. Predicting heart disease helps patients avoid it in its early stages and can also help medical practitioners find out the main causes. Machine learning has proven over time to play an important role in decision making and forecasting through massive data sets created by the healthcare sector. This review provides an overview of heart disease prediction using applied machine learning algorithms such as Naïve Bayes, Random Forest, Decision Tree (DT), Support Vector Machine (SVM), Logistic Regression, and K-Nearest Neighbour (KNN). And these differences in the techniques are a reflection of many strategies for predicting heart disease. We present a synopsis of classification techniques that are primarily used in the predicted of heart disease. Additionally, we review several previous studies that conducted over the past four years, that used machine learning algorithms to predict cardiovascular.

Copyrights © 2024






Journal Info

Abbrev

ijcs

Publisher

Subject

Computer Science & IT Electrical & Electronics Engineering Engineering

Description

The Indonesian Journal of Computer Science (IJCS) is a bimonthly peer-reviewed journal published by AI Society and STMIK Indonesia. IJCS editions will be published at the end of February, April, June, August, October and December. The scope of IJCS includes general computer science, information ...