The Indonesian Journal of Computer Science
Vol. 13 No. 3 (2024): The Indonesian Journal of Computer Science (IJCS)

The Performance Analysis of Graph Neural Network (GNN) and Convolutional Neural Network (CNN) Algorithms for Cyberbullying Detection in Twitter Comments

Muhammad Rizki Nurfiqri (Unknown)
Fitriyani (Unknown)



Article Info

Publish Date
15 Jun 2024

Abstract

Cyberbullying incidents have surged due to the expansion of social media network and advancements in internet technology, presenting a substantial challenge in online communities. Previous studies employing Support Vector Machine (SVM) techniques have exhibited promising outcomes, achieving a superior accuracy of 71.25%. However, recognizing the dynamic nature of cyberbullying behaviors and the necessity for more robust detection methodologies, this research explores cyberbullying detection on Twitter utilizing Convolutional Neural Network (CNN) and Graph Neural Network (GNN). The selection of CNN and GNN is motivated by the deficiencies observed in prior SVM-based approaches and the capacity of neural network to capture intricate patterns in textual and network data. The GNN consistently outperforms CNN in terms of F1 score, accuracy, precision, and recall. With only 20 epochs, GNN achieves an accuracy of 80.25%, surpassing CNN's 68.43%. Through GNN optimization, its accuracy reaches 89.04% after 100 epochs, underscoring its efficacy in Twitter cyberbullying detection.

Copyrights © 2024






Journal Info

Abbrev

ijcs

Publisher

Subject

Computer Science & IT Electrical & Electronics Engineering Engineering

Description

The Indonesian Journal of Computer Science (IJCS) is a bimonthly peer-reviewed journal published by AI Society and STMIK Indonesia. IJCS editions will be published at the end of February, April, June, August, October and December. The scope of IJCS includes general computer science, information ...