The escalating demand for agricultural precision and environmental monitoring underscores the necessity for effective soil crack detection methods. This study explores the feasibility of employing a Raspberry Pi-powered camera system and deep learning image recognition to detect soil cracks and control agricultural irrigation. The purpose is to develop a soil crack detection system using deep learning techniques, sustain plant growth process, increase productivity, and optimize water irrigation practice. Our approach leverages TensorFlow to craft a convolutional neural network tailored specifically for execution on a Raspberry Pi 3B+. A dataset comprises manually captured images and is trained with the InceptionV3 model categorized into crack or nocrack classes. The accuracy is achieved ranging from 97% to 99%. These results underscore deep learning image recognition models on Raspberry Pi for cost-effective soil crack monitoring and controlling the plants watering system.
Copyrights © 2024