The Indonesian Journal of Computer Science
Vol. 13 No. 3 (2024): The Indonesian Journal of Computer Science (IJCS)

Transfer Learning in Machine Learning: A Review of Methods and Applications

Ali, Ali Hamad (Unknown)
Abdulazeez, Adnan Mohsin (Unknown)



Article Info

Publish Date
15 Jun 2024

Abstract

Transfer learning has gained significant traction and popularity in the field of machine learning due to its wide range of potential applications. This review article offers a thorough examination of transfer learning techniques and their wide-ranging applications in several fields. This text provides a thorough evaluation of the literature, focusing on important research and the methodology used. Furthermore, a comparative table highlighting transfer learning research across several areas provides valuable insights into the wide range of applications. The inclusion criteria were centred on recent articles published within the past five years that comprehensively examined transfer learning methodologies, applications, frameworks, problems, and future directions. The review articles highlight the widespread use of transfer learning models, the effectiveness of data augmentation strategies, and the capability of transfer learning to tackle issues particular to different domains. Nevertheless, some constraints like as biases in the dataset, difficulties in interpreting the model, and problems with scalability have been recognised. These limitations provide opportunities for future research to focus on creating transfer learning algorithms that are more resilient and easier to read.

Copyrights © 2024






Journal Info

Abbrev

ijcs

Publisher

Subject

Computer Science & IT Electrical & Electronics Engineering Engineering

Description

The Indonesian Journal of Computer Science (IJCS) is a bimonthly peer-reviewed journal published by AI Society and STMIK Indonesia. IJCS editions will be published at the end of February, April, June, August, October and December. The scope of IJCS includes general computer science, information ...