Jurnal Informatika Teknologi dan Sains (Jinteks)
Vol 5 No 4 (2023): EDISI 18

ANALISIS SENTIMEN MENGGUNAKAN SVM DAN KNN PADA REVIEW DRAMA KOREA DI MYDRAMALIST

Nur Raisa (Universitas Logistik dan Bisnis Internasional)
Noviana Riza (Universitas Logistik dan Bisnis Internasional)
Woro Isti Rahayu (Universitas Logistik dan Bisnis Internasional)



Article Info

Publish Date
29 Dec 2023

Abstract

Use of K-Nearest Neighbors and Support Vector Machine methods, sentiment analysis was performed on a Korean drama review dataset found on the MyDramaList platform. This dataset contains information about Korean drama reviews provided by MyDramaList users, and is processed through text processing stages such as word beheading, stopwords removal, and cleaning. This research uses two classification methods, SVM and KNN. SVM classifies sentiment based on the feature vectors obtained, while KNN serves as a comparison to measure the performance of SVM. During experiments with test data, the performance of both methods is assessed by evaluation metrics such as accuracy, precision, recall, and f1 score. However, SVM tends to give better results compared to KNN in some cases. By combining SVM and KNN methods, this research improves sentiment analysis to analyze sentiment on Korean drama review dataset in MyDramaList.

Copyrights © 2023






Journal Info

Abbrev

JINTEKS

Publisher

Subject

Computer Science & IT Control & Systems Engineering

Description

Jurnal Informatika Teknologi dan Sains (JINTEKS) merupakan media publikasi yang dikelola oleh Program Studi Informatika, Fakultas Teknik dengan ruang lingkup publikasi terkait dengan tema tema riset sesuai dengan bidang keilmuan Informatika yang meliputi Algoritm, Software Enginering, Network & ...