Student satisfaction with academic services in the Independent Learning Campus Merdeka (MBKM) activities needs to be known and analyzed for the purposes of evaluating the learning process program. The Decision Tree Algorithm C4.5 is a data mining classification method that is suitable for predicting student satisfaction with academic services by producing a pattern or model of decision trees and decision rules. This study produced 3 decision rules with the 2 most influential aspects, namely tangible and reliability with an accuracy rate of 72.50% and an AUC value of 0.957 so that the data classification value was categorized as very good. And the development of a prediction application to facilitate the prediction of satisfaction with academic services in the Merdeka Learning Campus Merdeka program.Keyword: Student Satisfaction; Academic Services; Decision Tree C4.5Â AbstrakKepuasan mahasiswa terhadap layanan akademik dalam kegiatan Merdeka Belajar Kampus Merdeka (MBKM) perlu diketahui dan dianalisis untuk keperluan evaluasi program proses pembelajaran. Algoritme Decision Tree C4.5 merupakan metode klasifikasi data mining yang cocok untuk memprediksi kepuasan mahasiswa terhadap layanan akademik dengan menghasilkan sebuah pola atau model pohon keputusan dan rule keputusan. Dalam penelitian ini menghasilkan 3 rule keputusan dengan 2 aspek yang paling berpengaruh yaitu tangible dan reability dengan tingkat akurasi 72,50% dan nilai AUC 0.957 sehingga nilai klasifikasi data dikategorikan sangat baik. Dan pengembangan aplikasi prediksi untuk memudahkan prediksi kepuasan terhadap layanan akademik dalam program Merdeka Belajar Kampus Merdeka (MBKM).Â
Copyrights © 2023