Parameter: Journal of Statistics
Vol. 4 No. 1 (2024)

Predicting Drought in East Nusa Tenggara: A Novel Approach Using Wavelet Fuzzy Logic and Support Vector Machines

Sain, Hartayuni (Unknown)
Fadri, Firda (Unknown)



Article Info

Publish Date
11 Jun 2024

Abstract

The water crisis, or what is hereinafter referred to as drought, has become a systemic and crucial problem in several regions in Indonesia. Indonesia is an agricultural country, where the presence of water is very influential so that drought can become a natural disaster if it starts to cause an area to lose its source of income due to disturbances in agriculture and the ecosystem it causes. Drought forecasting can provide support solutions in preventing the impact of drought. In this paper, we compare the performance of wavelet fuzzy logic and the support vector machine (SVM) as a supervised learning method for drought forecasting in East Nusa Tenggara. This study examines the monthly rainfall data for 1999-2015 which is the basis for calculating the drought index based on the Standardized Precipitation Index (SPI). The SPI value used is SPI-3 at a station in East Nusa Tenggara. The performance of models is compareded on R2. The results showed that R2 of wavelet fuzzy logic is smaller than one of SVMVM is better than the wavelet fuzzy logic for forecasting SPI value of drought in East Nusa Tenggara.

Copyrights © 2024






Journal Info

Abbrev

parameter

Publisher

Subject

Computer Science & IT Decision Sciences, Operations Research & Management Mathematics

Description

Parameter: Journal of Statistics is a refereed journal committed to original research articles, reviews and short communications of Statistics and its ...