Claim Missing Document
Check
Articles

Found 13 Documents
Search

MENAKSIR PARAMETER µ DARI N( µ, ) DENGAN METODE BAYES Hartayuni Saini
JURNAL ILMIAH MATEMATIKA DAN TERAPAN Vol. 7 No. 1 (2010)
Publisher : Program Studi Matematika, Universitas Tadulako

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22487/2540766X.2010.v7.i1.29

Abstract

Untuk  menaksir  nilai  µ  dari  N(µ, )  umumnya  digunakan  teknik  Maximum  Likelihood.  Jarang  sekali penggunaan Metode Bayes untuk menaksir nilai parameter µ tersebut. Cara Bayes ini memang lebih rumit  dari  cara  Maximum  Likelihood.  Tulisan  ini  membahas  penaksiran  µ  dari  N(µ, )  dengan  cara Bayes.  Solusi  Bayes  ini  selanjutnya  akan  dibandingkan  dengan  solusi  Maximum  Likelihood  dengan menggunakan hasil simulasi data dengan menggunakan perangkat lunak Manitab yang menunjukkan bahwa untuk ukuran data ≥ 30 ke dua pendekatan ini mempunyai nilai yang “sama”.
Implementation of the Fuzzy Time Series Singh Method for Forecasting Non-Oil and Gas Export Values in Indonesia Borahima, Maharani Safira B.; Sain, Hartayuni; Setiawan, Iman; Fadri, Firda
BERKALA SAINSTEK Vol 12 No 3 (2024)
Publisher : Universitas Jember

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.19184/bst.v12i3.52663

Abstract

Export activities drive a country's economic growth by increasing revenue and strengthening trade relations between countries. In Indonesia, non-oil and gas products are the primary contributors of export performance. In 2022, non-oil and gas exports values reached 275.96 million USD, marking an increase of 25.80% compared to the previous year's export value. This growth in export value was influenced by various external factors, leading to substantial changes. The government requires further analysis to forecast future trends in non-oil and gas export values due to the uncertain and fluctuating patterns. The Singh Fuzzy Time Series method, an advancement of FST, utilizes fuzzy sets to forecast volatile economic data, yielding more accurate predictions. This research used the Singh FST method and achieved a low MAPE value of 1.31%, indicating a high level of accuracy. Forecasts for Indonesia's non-oil and gas export value over the next three months are projected to reach USD 22,263.02 million in January 2023, followed by USD 22,217.21 million in February 2023, and USD 22,243.68 million in March 2023. These export value forecasts can aid the government in policy-making related to exports and sustain the stability of the country’s economic growth rate.
ANALISIS STRUCTURAL EQUATION MODEL DENGAN PENDEKATAN BAYESIAN Sain, Hartayuni
JURNAL ILMIAH MATEMATIKA DAN TERAPAN Vol. 11 No. 1 (2014)
Publisher : Program Studi Matematika, Universitas Tadulako

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (518.988 KB) | DOI: 10.22487/2540766X.2014.v11.i1.7479

Abstract

ANALISIS STRUCTURAL EQUATION MODEL DENGAN PENDEKATAN BAYESIAN
MODEL REGRESI LOGISTIK BINER UNTUK MENENTUKAN FAKTOR YANG BERPENGARUH TERHADAP ANAK PUTUS SEKOLAH DI SULAWESI TENGAH Sinaga, Novita Damayanti; Rais, Rais; Sain, Hartayuni
JURNAL ILMIAH MATEMATIKA DAN TERAPAN Vol. 13 No. 1 (2016)
Publisher : Program Studi Matematika, Universitas Tadulako

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (470.909 KB) | DOI: 10.22487/2540766X.2016.v13.i1.7494

Abstract

MODEL REGRESI LOGISTIK BINER UNTUK MENENTUKAN FAKTOR YANG BERPENGARUH TERHADAP ANAK PUTUS SEKOLAH DI SULAWESI TENGAH
PEMODELAN USIA MENARCHE DENGAN METODE REGRESI LOGISTIK MULTINOMIAL (STUDI KASUS : PADA SISWI SMP NEGERI DIKOTA PALU) Winarti, Winarti; Rais, Rais; Sain, Hartayuni
JURNAL ILMIAH MATEMATIKA DAN TERAPAN Vol. 13 No. 1 (2016)
Publisher : Program Studi Matematika, Universitas Tadulako

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (423.243 KB) | DOI: 10.22487/2540766X.2016.v13.i1.7496

Abstract

PEMODELAN USIA MENARCHE DENGAN METODE REGRESI LOGISTIK MULTINOMIAL (STUDI KASUS : PADA SISWI SMP NEGERI DIKOTA PALU)
Penyelesaian Persamaan Diferensial Menggunakan Metode Runge Kutta Orde Keenam Dengan Algoritma Paralel Al Fajri, Iman; Hendra; Kusuma, Jeffry; Musdalifah, Selvy; Nacong, Nasria; Sain, Hartayuni; Arsal, Armayani
JURNAL ILMIAH MATEMATIKA DAN TERAPAN Vol. 20 No. 2 (2023)
Publisher : Program Studi Matematika, Universitas Tadulako

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22487/2540766X.2023.v20.i2.16354

Abstract

Penelitian tentang paralelisasi terus mengalami perkembangan saat ini, termasuk dalam perhitungan numerik. Pada tulisan ini akan dibahas penyelesaian persamaan diferensial menggunakan metode Runge-Kutta orde keenam dengan algoritma paralel. Makalah ini menyajikan penurunan dari metode Runge-Kutta orde keenam yang cocok untuk implementasi secara paralel. Pengembangan model paralel didasarkan pada struktur ketersebaran. Hasil perhitungan dengan model paralel kemudian akan dibandingkan dengan model sekuensial dari sisi akurasi dan waktu eksekusi. Pehitungan numerik menunjukkan bahwa metode paralel lebih mendekati solusi analitik, artinya akurasinya lebih baik. Ditinjau dari sisi waktu eksekusi, metode paralel juga memiliki keunggulan dibandingakan dengan metode sekuensial, yaitu lebih cepat.
Biserial Point Correlation to Measure The Relationship Between The Characteristics of Health Workers at Undata Palu Hospital with Antibody Levels Fadjriyani; Mohammad Fajri; Hartayuni Sain; Gamayanti, Nurul Fiskia; Rais
JURNAL ILMIAH MATEMATIKA DAN TERAPAN Vol. 21 No. 1 (2024)
Publisher : Program Studi Matematika, Universitas Tadulako

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22487/2540766X.2024.v21.i1.17109

Abstract

Correlation analysis is a term in statistics commonly used to study the relationship between variables. The purpose of this analysis technique is to get a pattern of the closeness or strength of the relationship between two variables expressed by the correlation coefficient. The correlation coefficient is a value that indicates whether or not there is a strong linear relationship between two variables. This study aims to find the relationship between the characteristics of health workers at Undata Hospital Palu and antibody levels. The characteristics of health workers are nominal data with two categories while antibody levels are measured using ratio or interval data. This type of data is suitable to be analyzed using point biserial correlation technique. There are several variables of respondent characteristics that influence immune performance, namely gender, presence or absence of comorbidities, smoking habits, health conditions, exercise habits, close contact with patients and vaccine history. The results of the correlation analysis showed that all respondent characteristic variables had a very weak correlation with antibody levels. This is indicated by the correlation coefficient value of each variable of 0.034; 0.062; 0.063; 0.074; 0.020; 0.079 and 0.119. This means that the characteristics of respondents do not really affect the rise and fall of antibody levels. However, vaccine history has the highest correlation coefficient compared to other variables. This indicates that one of the prevention efforts against infectious diseases is the administration of vaccines.
Pemodelan Jumlah Siswa Putus Sekolah Tingkat SMA di Indonesia Menggunakan Geographically Weighted Generalized Poisson Regression Azizah, Nur; Gamayanti, Nurul Fiskia; Junaidi, Junaidi; Sain, Hartayuni; Fadjriyani, Fadjryani
Jurnal Varian Vol 8 No 1 (2024)
Publisher : Universitas Bumigora

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30812/varian.v8i1.4248

Abstract

In 2022, the high school dropout rate is the highest compared to other levels of education in Indonesia.Seeing the urgency of the 12-year Compulsory Education program, completing education up to the highschool level is an important thing that needs to be considered. Thus, it is necessary to know the factorsthat influence the dropout rate in the hope that this problem can be reduced. This study aims to modelthe high school dropout rate using geographically weighted generalized poisson regression (GWGPR)based on the factors that influence it. GWGPR is used if the response variable is overdispersed anddepends on the location observed. The results of this study indicate that each province has a different regression model. The GWGPR model with the adaptive tricube kernel weighting function is thebest model because it has the smallest AIC value compared to other weighting functions. In CentralSulawesi Province, the GWGPR model with the adaptive tricube kernel weighting function formed isµˆ26 = exp (8, 1267 − 0, 1267X4 + 0, 0344X5 + 0, 0957X6 + 0, 1173X7). With the significant variables are the average length of schooling, the percentage of the population aged 7-17 years who receivePIP, the open unemployment rate, and the percentage of children who do not live with parents.
MODELING THE IDX30 STOCK INDEX USING STEP FUNCTION INTERVENTION ANALYSIS Rais, Rais; Afriza, Dini Aprilia; Setiawan, Iman; Sain, Hartayuni; Fadjryani, Fadjryani; Junaidi, Junaidi
BAREKENG: Jurnal Ilmu Matematika dan Terapan Vol 19 No 3 (2025): BAREKENG: Journal of Mathematics and Its Application
Publisher : PATTIMURA UNIVERSITY

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30598/barekengvol19iss3pp2057-2068

Abstract

The significant decline in the IDX30 stock index occurred due to an intervention, namely the COVID-19 pandemic, which affected market stability and investment decisions. This study aims to model and forecast the IDX30 stock index using intervention analysis with a step function, which is very suitable for capturing long-term external shocks. The methodology used includes the ARIMA (AutoRegressive Integrated Moving Average) model combined with step function intervention analysis to account for structural changes due to external disturbances. The data used is sourced from investing.com, consisting of weekly IDX30 stock index prices from January 2019 to December 2023. The results show that the COVID-19 pandemic significantly impacted the IDX30 index, causing a drastic decline. The best model identified is ARIMA (1,2,1) with intervention parameters b = 0, s = 0, and r = 1. The forecasting results range from Rp. 488 to Rp. 505, with a Mean Absolute Percentage Error (MAPE) of 1.9404%, which shows the forecasting results are very good, indicating high forecasting accuracy. These findings highlight the effectiveness of intervention analysis in modeling financial time series data affected by external disturbances.
APPLICATION OF THE RASCH MODEL TO TEST TOOLS IN THE ANALYSIS OF SURVEY DESIGN Anggraini, Nini; Nabillah, Chantika; Dermawan Lonan, Herdi; Sain, Hartayuni
Parameter: Journal of Statistics Vol. 3 No. 1 (2023)
Publisher : Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Tadulako

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22487/27765660.2023.v3.i1.16412

Abstract

The purpose of this study was to examine the instruments used to assess students' abilities in the designer analysis course of the statistics study program at Tadulako University. There were 90 students enrolled in this course, and the questions included 25 multiple-choice items related to survey design content. The test instrument for understanding the survey designer course was the subject of this study. The Rasch method, which is used to get fit items, is used. Winsteps software was used to carry out this analysis. In accordance with the Rasch model, the Winsteps program produced 23 items with an average value of 1.11 and -0.08 for MNSQ Outfit for person and item, respectively. In spite of the fact that the person's and the item's Outfit ZSTD values are 1.11 and 0.26, respectively, and despite the fact that the instrument's reliability, as measured by Cronbach's alpha, is 0.86, 23 of the 25 question items fit and 2 do not.