JURNAL KIMIA SAINS DAN APLIKASI
Vol 27, No 5 (2024): Volume 27 Issue 5 Year 2024

The Potency of Adenostemma platyphyllum as Antimelanogenic Agent: In-vitro and In-silico Studies

Lutfia Mutmainnah (Department of Chemistry, Faculty of Mathematics and Natural Sciences, IPB University, Bogor|IPB University|Indonesia)
Irmanida Batubara (Department of Chemistry, Faculty of Mathematics and Natural Sciences, IPB University, Bogor|IPB University|Indonesia
Tropical Biopharmaca Research Center, IPB University, Bogor|IPB University|Indonesia)

Auliya Ilmiawati (Department of Chemistry, Faculty of Mathematics and Natural Sciences, IPB University, Bogor|IPB University|Indonesia
Tropical Biopharmaca Research Center, IPB University, Bogor|IPB University|Indonesia)



Article Info

Publish Date
31 May 2024

Abstract

Melanin is a crucial amino acid in determining human skin and hair pigmentation. Excessive melanin production can lead to hyperpigmentation and darkening of the skin. This study aims to assess the capability of Adenostemma platyphyllum as a tyrosinase enzyme inhibitor. It predicts its anti-melanogenic activity through molecular docking with proteins involved in the melanogenesis process. The in-vitro approach was conducted by determining the tyrosinase enzyme inhibition capacity, while the in-silico approach involved ligand binding to target proteins from melanogenesis pathways. The highest tyrosinase inhibition capacity was observed in the ethanol extract, with values of 9.74 Kojic Acid Equivalent (KAE)/g extract (L-tyrosine) and 17.91 (KAE)/g extract (L-DOPA). Molecular docking analysis showed that the binding of eriodictyol 7-O-sophoroside (ΔG = -9.7 kcal/mol) has the best energy affinity for the PKC-β protein, genistein (ΔG = -7.5 kcal/mol) for the tyrosinase-related protein-1 (TYRP1) protein, eriodictyol 7-O-sophoroside (ΔG = -10.2 kcal/mol) for the cGMP protein, vincosamide (ΔG = -7.2 kcal/mol) for the microphthalmia-associated transcription factor (MITF) protein, and dicaffeoylquinic acid (ΔG = -7.4 kcal/mol) for the β-catenin protein. Based on a comparison of in-vitro and in-silico studies, melanogenesis inhibition is more potent in the PKC-β and cGMP pathways than direct tyrosinase inhibition because they exhibit lower binding energy.

Copyrights © 2024






Journal Info

Abbrev

ksa

Publisher

Subject

Chemical Engineering, Chemistry & Bioengineering Chemistry Engineering

Description

urnal Kimia Sains dan Aplikasi (p-ISSN: 1410-8917) and e-ISSN: 2597-9914) is published by Department of Chemistry, Diponegoro University. This journal is published four times per year and publishes research, review and short communication in field of ...