Civil Engineering Journal
Vol 10, No 4 (2024): April

Strength Assessment of Stiffened-Panel Structures against Buckling Loads: FE Benchmarking and Analysis

M. Sholikhah (Department of Mechanical Engineering, Universitas Sebelas Maret, Surakarta,)
R. Ridwan (Department of Mechanical Engineering, Universitas Merdeka Madiun, Madiun,)
A. R. Prabowo (Department of Mechanical Engineering, Universitas Sebelas Maret, Surakarta,)
T. Ghanbari-Ghazijahani (Faculty of Science and Engineering, School of Engineering, Macquarie University, New South Wales,)
I. Yaningsih (Department of Mechanical Engineering, Universitas Sebelas Maret, Surakarta,)
N. Muhayat (Department of Mechanical Engineering, Universitas Sebelas Maret, Surakarta,)
D. D. D. P. Tjahjana (Department of Mechanical Engineering, Universitas Sebelas Maret, Surakarta,)
R. Adiputra (Research Center for Hydrodynamics Technology, National Research and Innovation Agency (BRIN), Surabaya,)
J. M. Sohn (Department of Naval Architecture and Marine Systems Engineering, Pukyong National University, Busan,)



Article Info

Publish Date
01 Apr 2024

Abstract

This research endeavors to examine the effect of stiffener shapes on the structural capacity of stiffened-plate structures, specifically focusing on Tee (T), Angle (L), and Flat (I) stiffened plates. The primary objectives are threefold: firstly, to quantify the critical load values during the buckling phenomenon for T, L, and I stiffened plates; secondly, to assess model deformation upon failure; and thirdly, to investigate whether the buckling behavior of T, L, and I stiffened plates correlates with distinct failure patterns. Employing numerical simulation through the finite element method, this study sheds light on previously unexplored aspects of structural behavior. The findings indicate that angle stiffeners exhibit superior load-bearing performance compared to flat bars. Notably, the research reveals a substantial increase in maximum compressive load by at least 15.90% with Tee bar and 8.25% with angle bar stiffeners when the stiffened panels undergo a 5 mm displacement, presenting a potential avenue for structural enhancement. Additionally, the study demonstrates that T bars outperform in terms of resisting buckling. Noteworthy is the novel approach of examining the combined effect of transverse frame, longitudinal frame, and hull girder under buckling scenarios, a facet not explored in previous research. Furthermore, the utilization of steel S355JR-EN10210 as a material introduces a unique dimension not previously considered in these scenarios. Doi: 10.28991/CEJ-2024-010-04-03 Full Text: PDF

Copyrights © 2024






Journal Info

Abbrev

cej

Publisher

Subject

Civil Engineering, Building, Construction & Architecture

Description

Civil Engineering Journal is a multidisciplinary, an open-access, internationally double-blind peer -reviewed journal concerned with all aspects of civil engineering, which include but are not necessarily restricted to: Building Materials and Structures, Coastal and Harbor Engineering, ...