Civil Engineering Journal
Vol 10, No 5 (2024): May

Pulsed-Bed Column Adsorption for Triclosan Removal Using Macadamia Nut Shell Activated Carbon

Jareeya Yimrattanabovorn (School of Environmental Engineering, Suranaree University of Technology, Nakhon Ratchasima, 30000,)
Mananya Phalaiphai (School of Environmental Engineering, Suranaree University of Technology, Nakhon Ratchasima, 30000,)
Siriwan Nawong (Synchrotron Research and Applications Division, Synchrotron Light Research Institute (Public Organization), Nakhon Ratchasima, 30000,)



Article Info

Publish Date
01 May 2024

Abstract

Triclosan (TCS), a common antibacterial agent found in numerous personal care products, has been detected in wastewater and surface water and is now of significant environmental concern due to its health impacts. To mitigate this issue, various treatment methods have been explored. This study investigated the efficacy of Macadamia nut shell activated carbon (MAC) as an economical adsorbent for triclosan removal. A pulsed-bed column adsorption technique was applied to enhance adsorption capacity and prolong the operational lifespan of the column. Batch experiments were conducted to explore various parameters and adsorption capacity. Column experiments were carried out to investigate breakthrough curves and various associated parameters. In batch experiments, MAC exhibited a high TCS adsorption capacity of 119.05 mg/g, and optimal adsorption conditions were determined. Adsorption kinetics followed the pseudo-second-order model, and equilibrium data were well-fitted by both the Langmuir and Freundlich isotherm models. A pulsed-bed column adsorption showed superior performance compared to a fixed-bed column under specific conditions (flow rate: 10 mL/min, TCS initial concentration: 60 mg/L, bed column height: 10 cm) and removal bed height of only 6 cm, successfully enhancing TCS adsorption capacity to 53.40 mg/g and extending the operational lifespan of the column to 5,280 minutes. Adapting pulsed-bed columns for TCS removal from wastewater in the personal care product industry led to the extension of column life with increased adsorption capacity and minimized the use of adsorbents as a practical and environmentally friendly method. Doi: 10.28991/CEJ-2024-010-05-019 Full Text: PDF

Copyrights © 2024






Journal Info

Abbrev

cej

Publisher

Subject

Civil Engineering, Building, Construction & Architecture

Description

Civil Engineering Journal is a multidisciplinary, an open-access, internationally double-blind peer -reviewed journal concerned with all aspects of civil engineering, which include but are not necessarily restricted to: Building Materials and Structures, Coastal and Harbor Engineering, ...