Penelitian ini mengevaluasi efektivitas berbagai teknik deteksi hoaks di Indonesia menggunakan model klasifikasi teks dengan dua ukuran dataset berbeda, yaitu 250 dan 650 sampel. Hoaks di media sosial memiliki dampak signifikan pada masyarakat, sehingga deteksi yang akurat sangat penting. Penelitian ini menguji tiga algoritma machine learning—ID CNN, Bi-LSTM, dan LSTM—dengan teknik regulasi seperti original, regularization, dan dropout. Hasil penelitian menunjukkan bahwa teknik regularisasi pada ID CNN memberikan akurasi tertinggi pada dataset 250 sampel, sementara Bi-LSTM dengan teknik original mencapai akurasi tertinggi pada dataset yang sama. Dataset yang lebih besar (600 sampel) menunjukkan bahwa teknik regularisasi pada ID CNN tetap stabil, sedangkan teknik dropout memberikan hasil yang bervariasi. Analisis menggunakan confusion matrix dan grafik learning menunjukkan adanya overfitting pada model, terutama pada dataset yang lebih kecil. Temuan ini menegaskan pentingnya penerapan teknik regulasi untuk mengurangi overfitting dan meningkatkan generalisasi model dalam deteksi hoaks. Penelitian ini memberikan kontribusi pada pengembangan sistem deteksi hoaks yang lebih efektif di Indonesia.
Copyrights © 2024