Claim Missing Document
Check
Articles

Dynamic Hand Gesture Recognition Using Temporal-Stream Convolutional Neural Networks Fladio Armandika; Esmeralda Contessa Djamal; Fikri Nugraha; Fatan Kasyidi
Proceeding of the Electrical Engineering Computer Science and Informatics Vol 7, No 1: EECSI 2020
Publisher : IAES Indonesia Section

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/eecsi.v7.2048

Abstract

Movement recognition is a hot issue in machine learning. The gesture recognition is related to video processing, which gives problems in various aspects. Some of them are separating the image against the background firmly. This problem has consequences when there are incredibly different settings from the training data. The next challenge is the number of images processed at a time that forms motion. Previous studies have conducted experiments on the Deep Convolutional Neural Network architecture to detect actions on sequential model balancing each other on frames and motion between frames. The challenge of identifying objects in a temporal video image is the number of parameters needed to do a simple video classification so that the estimated motion of the object in each picture frame is needed. This paper proposed the classification of hand movement patterns with the Single Stream Temporal Convolutional Neural Networks approach. This model was robust against extreme non-training data, giving an accuracy of up to 81,7%. The model used a 50 layers ResNet architecture with recorded video training.
Semantic Classification of Scientific Sentence Pair Using Recurrent Neural Network Agung Besti; Ridwan Ilyas; Fatan Kasyidi; Esmeralda Contessa Djamal
Proceeding of the Electrical Engineering Computer Science and Informatics Vol 7, No 1: EECSI 2020
Publisher : IAES Indonesia Section

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/eecsi.v7.2051

Abstract

One development of Natural Language Processing is the semantic classification of sentences and documents. The challenge is finding relationships between words and between documents through a computational model. The development of machine learning makes it possible to try out various possibilities that provide classification capabilities. This paper proposes the semantic classification of sentence pairs using Recurrent Neural Networks (RNN) and Long Short-Term Memory (LSTM). Each couple of sentences is turned into vectors using Word2Vec. Experiments carried out using CBOW and Skip-Gram to get the best combination. The results are obtained that word embedding using CBOW produces better than Skip-Gram, although it is still around 5%. However, CBOW slows slightly at the beginning of iteration but is stable towards convergence. Classification of all six classes, namely Equivalent, Similar, Specific, No Alignment, Related, and Opposite. As a result of the unbalanced data set, the retraining was conducted by eliminating a few classes member from the data set, thus providing an accuracy of 73% for non-training data. The results showed that the Adam model gave a faster convergence at the start of training compared to the SGD model, and AdaDelta, which was built, gave 75% better accuracy with an F1-Score of 67%.
Hand Movement Identification Using Single-Stream Spatial Convolutional Neural Networks Aldi Sidik Permana; Esmeralda Contessa Djamal; Fikri Nugraha; Fatan Kasyidi
Proceeding of the Electrical Engineering Computer Science and Informatics Vol 7, No 1: EECSI 2020
Publisher : IAES Indonesia Section

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/eecsi.v7.2055

Abstract

Human-robot interaction can be through several ways, such as through device control, sounds, brain, and body, or hand gesture. There are two main issues: the ability to adapt to extreme settings and the number of frames processed concerning memory capabilities. Although it is necessary to be careful with the selection of the number of frames so as not to burden the memory, this paper proposed identifying hand gesture of video using Spatial Convolutional Neural Networks (CNN). The sequential image's spatial arrangement is extracted from the frames contained in the video so that each frame can be identified as part of one of the hand movements. The research used VGG16, as CNN architecture is concerned with the depth of learning where there are 13 layers of convolution and three layers of identification. Hand gestures can only be identified into four movements, namely 'right', 'left', 'grab', and 'phone'. Hand gesture identification on the video using Spatial CNN with an initial accuracy of 87.97%, then the second training increased to 98.05%. Accuracy was obtained after training using 5600 training data and 1120 test data, and the improvement occurred after manual noise reduction was performed.
Peringkasan Otomatis Makalah Menggunakan Maximum Marginal Relevance Wildan Pratama; Ridwan Ilyas; Fatan Kasyidi
Informatics and Digital Expert (INDEX) Vol. 3 No. 1 (2021): INDEX, MEI 2021
Publisher : LPPM Universitas Perjuangan Tasikmalaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.36423/index.v3i1.677

Abstract

Makalah merupakan karya tulis yang memuat pemikiran tentang suatu masalah atau topik tertentu yang ditulis secara sistematis disertai dengan analisis yang logis objektif. Membaca merupakan proses melihat serta memahami isi dari apa yang tertulis. Proses membaca dipengaruhi beberapa factor yang diantaranya jumlah dari bacaan, sehingga penyederhaan atau perinkasan suatu bacaan contoh seperti makalah maka akan menambah kecepatan membaca. Ringkasan merupakan suatu cara yang efektif untuk menyajikan suatu karangan yang panjang dalam bentuk yang singkat. Peringkasan makalah dilakukan untuk menyajikan jumlah bacaan lebih sedikit tanpa mengurangi informasi yang disampaikan dan mempertahankan dalam bentuknya yang singkat. Dalam membuat ringkasan kita diharuskan untuk membaca keseluruhan isi makalah tersebut terlebih dahulu, untuk kemudian meringkasnya. Hal ini tentu menjadi masalah dimana ringkasan dibuat dengan tujuan untuk meminimalkan waktu membaca tetapi tetap dapat memberikan teks yang isinya langsung mengarah pada tujuan utama atau ide pokoknya. Untuk memecahkan masalah tersebut diperlukan suatu perangkat atau aplikasi yang dapat meringkas teks secara otomatis. Beberapa penelitian terdahulu menggunakan graph-based summarization untuk meringkas dokumen tunggal bahasa Indonesia. Penelitian ini membangun sistem yang dapat meringkaskan makalah menjadi ringkasan menggunakan maximum marginal relevance. maximum marginal relevance dipilih karena mampu menilai kalimat dan merankingnya sebagai acuan untuk pembentukan ringkasan. Penelitian ini mendapatkan hasil ringkasan terbaik dengan pengujian Rouge-1 dengan rata-rata yang diraih 0.68.
Analisis Spasial Temporal Kerentanan Bencana Alam Dalam Mendukung Ketahanan Terhadap Bencana di Indonesia Asep Id Hadiana; Agus Komarudin; Eddie Khrisna Putra; Melina .; Rezky Yuniarti; Ridwan Ilyas; Fatan Kasyidi
Jurnal ICT : Information Communication & Technology Vol 20, No 2 (2021): JICT-IKMI, Desember 2021
Publisher : STMIK IKMI Cirebon

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.36054/jict-ikmi.v20i2.379

Abstract

Gempa Bumi Besar dan konsekuensi tragisnya belakangan ini di lokasi berbeda di seluruh dunia, termasuk dalam hal ini di Indonesia membenarkan kebutuhan darurat untuk memasukkan analisis risiko gempa dalam praktik manajemen penanggulangan bencana.  Mengintegrasikan analisis dampak risiko gempa bumi dalam praktik manajemen penanggulangan bencana menjadi hal yang sangat penting. Studi ini menyajikan pendekatan yang sederhana dan ilmiah melalui analisis spasial temporal dari data gempa bumi yang ada di Indonesia selama kurun waktu 2020. Dengan mengambil dataset mengenai kejadian gempa bumi di Indonesia yang terjadi dalam kurun waktu 2020, dapat dilihat bahwa hampir seluruh wilayah di Indonesia rentan terhadap bencana gempa bumi, dimana kekuatan gempa bumi rata-rata ada di kisaran 4 sampai 4.5 skala richter.Temuan penelitian ini diharapkan dapat membantu otoritas manajemen bencana di Indonesia dalam mengidentifikasi zona risiko, memvisualisasikan risiko bahaya untuk interpretasi yang lebih mudah, optimalisasi sumber daya dengan menargetkan kerentanan, dan memutuskan intervensi perencanaan dan pengendalian atas dampak bencana yang mungkin terjadi.
Use Case Framework of Computerized Production Monitoring Processes in Textile Industry Irma Santikarama; Faiza Renaldi; Fatan Kasyidi; Agya Java Maulidin
Journal of Applied Informatics and Computing Vol 6 No 1 (2022): July 2022
Publisher : Politeknik Negeri Batam

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30871/jaic.v6i1.3977

Abstract

Use cases are a description of system functions resulting from needs analysis and obtained from interviews and observations. In standard practices, this stage is also known as the most time-consuming stage. Although every use case produced in software development is unique, there is always a similarity in its function to systems made previously in other organizations. These similarities are studied to reduce time in the process during the requirements analysis stage. Many studies have built and used a Use Case Framework (UCF) to be used together by software developers. So far, UCF has been owned by the banking industry in mapping use case standards in ATMs, health in standardizing use cases in electronic medical records, libraries in standardizing information retrieval, and mapping processes in crowdfunding. This research adds to the list of the latest UCFs produced, namely in the related textile industry, in standardizing the functions that exist in computer-based production monitoring systems. It is based on the fact that there are many textile companies globally, with more than 1.000 of them are established in Indonesia. This study investigated eight Indonesian textile companies to obtain information data to determine what functions are required, t. The data collection techniques used were interviews and observation. More stages were carried out in this study afterward, namely defining Actor Analysis and Functional Methods, Combining Analysis, Classification of Use Cases, Describing Use Case Scenarios, and Visualizing Frameworks. The data analysis results obtained from each company, we managed to define 10 main use cases, 4 supporting use cases, and four specific use cases. This study’s products can help provide a reference in using case design to create a computer-based textile company monitoring system.
MESIN PENTERJEMAH BAHASA INDONESIA-BAHASA SUNDA MENGGUNAKAN RECURRENT NEURAL NETWORKS Yustiana Fauziyah; Ridwan Ilyas; Fatan Kasyidi
Jurnal Teknoinfo Vol 16, No 2 (2022): Juli
Publisher : Universitas Teknokrat Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33365/jti.v16i2.1930

Abstract

Penterjemah merupakan suatu proses dimana suatu bahasa diubah ke dalam bahasa lain. Penterjemah pada Penelitian lalu dilakukan dengan menggunakan pendekatan Phrase-based Statistical Machine Translation (PSMT). Penelitian ini membangun sebuah penerjemah Bahasa Indonesia ke Bahasa Sunda. Adapun tahapan yang digunakan dimulai dari pra proses menggunakan text preprocessing dan word embedding Word2Vec dan pendekatan yang digunakan yaitu Neural Machine Translation (NMT) dengan arsitektur Encoder-Decoder yang didalamnya terdapat sebuah Recurrent Neural Network (RNN). Pengujian pada penelitian menghasilkan nilai optimal oleh GRU sebesar 99,17%. Model dengan menggunakan Attention mendapat 99.94%. Penggunaan model optimasi mendapat hasil optimal oleh Adam 99.35% dan hasil BLEU Score dengan optimal bleu 92.63% dan brievity penalty 0.929. Hasil dari mesin penterjemah menghasilkan prediksi pelatihan dari Bahasa Indonesia ke Bahasa Sunda apabila input kalimat sesuai dengan korpus dan hasil terjemahan kurang sesuai ketika input kalimat berbeda dari korpus.
Interpretasi dan Visualisasi Hasil Clustering Menggunakan K-Medoid untuk Identifikasi Penyebaran Virus Covid-19 Puspita Nurul Sabrina; Ade Kania Ningsih; Fatan Kasyidi
Jurnal ICT : Information Communication & Technology Vol 21, No 1 (2022): JICT-IKMI, Juli 2022
Publisher : STMIK IKMI Cirebon

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.36054/jict-ikmi.v21i1.429

Abstract

Penyebaran virus Covid-19 di Indonesia terus terjadi dengan jumlah yang terus meningkat. Bagaimana pola penyebaran virus perlu diidentifikasi untuk membantu pencegahan penyebaran yang tidak terkendali. Salah satu cara menentukan pola adalah dengan melakukan clustering. Metode clustering dalam penelitian ini menggunakan metode K-Medoid, yang mana metode ini telah digunakan dalam beberapa penelitian tentang analisa penyakit. Hasil Clustering perlu diolah dan dianalisis agar pengetahuan dapat ditangkap lebih mudah. Proses ini disebut interpretasi yang dapat didukung dengan visualisasinya. Proses interpretasi dilakukan di antaranya  dengan melakukan visualisasi perbandingan 2 atribut yang mungkin terkait. Proses lainnya dengan pengolahan data yang masuk klaster-klaster dengan rekapitulasi/penjumlahan menurut provinsi dan atribut lain dengan cara filtering dan seleksi record. Hasil interpretasi diperoleh kesimpulan daerah dengan Kepadatan Penduduk tinggi, Area Wilayah yang lebih kecil, Populasi yang tinggi menunjukkan jumlah kasus dan kasus baru Covid-19 lebih tinggi. Interpretasi untuk setiap klaster penyebaran virus tampak klaster 1 adalah Kota Besar, Klaster 2 adalah Kota Wisata dan Bertetangga dengan negara lain, Klaster 3 adalah Pulau Jawa dan Klaster ke 4 adalah kota-kota lain diluar ketiga klaster lainnya.
Pemetaan Daerah Asal Mahasiswa Unjani Berbasis WebGis Fatan Kasyidi; Seffiera Fauziah; Faiza Renaldi; Irma Santikarama
JUMANJI (Jurnal Masyarakat Informatika Unjani) Vol 5 No 1 (2021): Jurnal Masyarakat Informatika Unjani
Publisher : Jurusan Informatika Universitas Jenderal Achmad Yani

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26874/jumanji.v5i1.90

Abstract

Sistem Informasi Geografis merupakan bidang ilmu yang membahas bidang geografis yang bisa diterapkan dalam berbagai bidang institusi, misalnya di bidang kemiliteran, bidang kedokteran, bidang pendidikan hingga bidang pertanian. Manfaat SIG secara umum memberikan informasi yang mendekati kondisi dunia nyata, memprediksi suatu hasil dan perencanaan strategis. Implementasi SIG dalam pendidikan dapat menjadi dasar pengambilan keputusan. Pemanfaatan SIG dalam pendidikan diantaranya mengatur data dan informasi yang ditampilkan secara geografis sehingga dapat diketahui sebaran dan pola yang terbentuk serta dapat menginventarisasi infrastruktur pendidikan. Pada sistem PMB Universitas Jenderal Achmad Yani belum memiliki pemetaan yang menjadikan pemrosesan data menjadi lebih lama. Sebelumnya unjani melakukan pengecekan daerah asal mahasiswa berupa tabel saja. Dari persoalan ini, GIS dapat memudahkan dalam membaca data dalam bentuk peta. Hal ini bertujuan untuk mengetahui daerah mana yang kurang mahasiswa yang nantinya bagian PMB bisa mengetahui perencanaan promosi unjani di periode berikutnya dari hasil pemetaan tersebut. Oleh karena itu, diperlukan suatu sistem yang memberikan informasi mengenai sebaran mahasiswa tersebut yang berbasis online. Metode yang digunakan untuk pembuatan sistem informasi geografis tersebut adalah metode waterfall. Beberapa pemrograman yang digunakan antara lain PHP dan HTML. Sistem yang dibuat mampu memberi informasi berupa peta sebaran mahasiswa dalam bentuk peta yang berbasis web (WebGIS). Pengujian ini dilakukan dengan User Acceptance test yang memiliki rata-rata kelayakan 76,50%
Peningkatan Kemampuan Pengenalan Emosi Melalui Suara dalam Bahasa Indonesia FATAN KASYIDI; RIDWAN ILYAS; NIDA MUTHI ANNISA
MIND (Multimedia Artificial Intelligent Networking Database) Journal Vol 6, No 2 (2021): MIND Journal
Publisher : Institut Teknologi Nasional, Bandung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26760/mindjournal.v6i2.194-204

Abstract

AbstrakInteraksi manusia dengan komputer merupakan fenomena yang terus berkembang diikuti oleh meningkatnya penggunaan komputer yang sering digunakan dalam ranah sosial manusia. Manusia saling berinteraksi dengan melibatkan emosi untuk memahami seseorang. Emosi manusia seringkali terwakili melalui cara berbicara. Penelitian tentang pengenalan emosi melalui suara telah banyak dilakukan, namun terdapat upaya peningkatan pengenalan emosi melalui suara, terutama masalah korpus yang menjadi salah satu faktor yang menjadikan pengenalan emosi ini belum menghasilkan akurasi pengenalan yang optimal, khususnya berkaitan dengan imbalance data. Penelitian ini dilakukan untuk meningkatkan performa pengenalan emosi untuk mengenali lima kelas emosi yaitu senang, marah, sedih dan kepuasan serta netral menggunakan algoritma boosting. Selain itu, digunakan pula metode seperti CNN dan RNN untuk dapat dilakukan perbandingan serta penerapan SMOTE untuk korpusnya. Setelah eksperimen, dapat dihasilkan akurasi pengenalan mencapai 65% untuk akurasi untuk data tes berdasarkan konfigurasi 22050 Hz sebagai sampling rate, MFCCs dan oversampling SMOTE.Kata kunci: Imbalance data, Algoritma Boosting, CNN, RNN, SMOTEAbstractHuman interaction with computers are a growing phenomenon followed by the increasing use of computers which are often utilized in human social activities. Humans interact with one another by involving emotions. Plenty of research on speech emotion recognition has been established. Nevertheless, there are still efforts to enhance speech emotion recognition, especially the corpus problem which is one of the factors that the model does not in an optimal performance, especially about imbalance data. This study was conducted to enhance the performance of emotion recognition to recognize five class emotions: happiness, angry, sadness, contentment, and neutral. Furthermore, we employed CNN, RNN, and Boosting Algorithms. Lastly, we applied SMOTE to the corpus. After the experiment, the accuracy reached 65% with 22050 Hz configuration as rate, MFCCs, and SMOTE oversampling.Keywords: Data Imbalance, Boosting Algorithms, CNN, RNN, SMOTE