The purpose of this research is to build a classification model that can perform the eye disease identification process so that the diagnosis of eye disease can be known and medical action can be taken as early as possible. This research used a dataset which has a total of 4217 eye image data and had 4 main classes namely cataract, diabetic retinopathy, glaucoma, and normal. With the data distribution of 1038 cataract images, 1098 diabetic retinopathy images, 1007 glaucoma images, and 1074 normal images, which of this data will be divided with a data percentage scheme of 50:10:40, 60:10:30, and 70:10:20, to see the results of which dataset division can produce optimal accuracy. In this study, the classification process will use 2 CNN transfer learning architectures, namely DenseNet, and efficientnetb3, which are both trained using the ImagiNet dataset. The results obtained after completing the testing process on the model built using the DenseNet architecture get optimal accuracy when using data division as much as 60:10:30, which is 78.59% while using the efficientnetb3 architecture optimal accuracy results when using the data division of 70:10:20, which is 95.66%. In research on the classification that had previously been done, it is very rare to find a classification process for eye disease types, therefore, in this study, the classification process will be carried out and provide an overview of the eye disease classification process with the CNN transfer learning method with more optimal accuracy results.
Copyrights © 2024