Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control
Vol. 9, No. 2, May 2024

Enhancing Qur'anic Recitation Experience with CNN and MFCC Features for Emotion Identification

Syafa'ah, Lailis (Unknown)
Prasetyono, Roby (Unknown)
Hariyady, Hariyady (Unknown)



Article Info

Publish Date
27 May 2024

Abstract

In this study, MFCC feature extraction and CNN algorithms are used to examine the identification of emotions in the murottal sounds of the Qur'an. A CNN model with labelled emotions is trained and tested, as well as data collection of Qur'anic murottal voices from a variety of readers using MFCC feature extraction to capture acoustic properties. The outcomes show that MFCC and CNN work together to significantly improve emotion identification. The CNN model attains an accuracy rate of 56 percent with the Adam optimizer (batch size 8) and a minimum of 45 percent with the RMSprop optimizer (batch size 16). Notably, accuracy is improved by using fewer emotional parameters, and the Adam optimizer is stable across a range of batch sizes. With its insightful analysis of emotional expression and user-specific recommendations, this work advances the field of emotion identification technology in the context of multitonal music.

Copyrights © 2024






Journal Info

Abbrev

kinetik

Publisher

Subject

Computer Science & IT Control & Systems Engineering Electrical & Electronics Engineering Energy Engineering

Description

Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control was published by Universitas Muhammadiyah Malang. journal is open access journal in the field of Informatics and Electrical Engineering. This journal is available for researchers who want to improve ...