Indonesian Journal on Computing (Indo-JC)
Vol. 8 No. 3 (2023): December 2023

QUIDS: A Novel Edge-Based Botnet Detection with Quantization for IoT Device Pairing

Aji Gautama Putrada (Unknown)
Nur Alamsyah (Unknown)
Mohamad Nurkamal Fauzan (Unknown)
Sidik Prabowo (Unknown)
Ikke Dian Oktaviani (Telkom University)



Article Info

Publish Date
30 Jan 2024

Abstract

Advanced machine learning has managed to detect IoT botnets. However, conflicts arise due to complex models and limited device resources. Our research aim is on a quantized intrusion detection system (QUIDS), an edge-based botnet detection for IoT device pairing. Using knearest neighbor (KNN) within QUIDS, we incorporate quantization, random sampling (RS), and feature selection (FS). Initially, we simulated a botnet attack, devised countermeasures via a sequence diagram, and then utilized a Kaggle botnet attack dataset. Our novel approach includes RS, FS, and 16-bit quantization, optimizing each step empirically. The test results show that employing a mean decrease in impurity (MDI) by FS reduces features from 115 to 30. Despite a slight accuracy drop in KNN due to RS, FS, and quantization sustain performance. Testing our model revealed 1200 RS samples as optimal, maintaining performance while reducing features. Quantization to 16-bit doesn’t alter feature value distribution. Implementing QUIDS increased the compression ratio (CR) to 175×, surpassing RS+FS threefold and RS by 13 times. This novel method emerges as the most efficient in CR.

Copyrights © 2023






Journal Info

Abbrev

indojc

Publisher

Subject

Computer Science & IT

Description

Indonesian Journal on Computing (Indo-JC) is an open access scientific journal intended to bring together researchers and practitioners dealing with the general field of computing. Indo-JC is published by School of Computing, Telkom University ...