This study explores the application of the Weighted Aggregated Sum Product Assessment (WASPAS) method's selection of the best wheat flour for vermicelli production, which aims to improve product quality and production efficiency. The study aimed to integrate experimental data with sophisticated decision-making models to identify the most suitable type of flour based on a comprehensive set of criteria. Using a quantitative approach, this study combines experimental methods, quantitative analysis, and model validation, using the WASPAS method to evaluate and rank various flours. The results showed significant differences among flour types, with selected flours showing superior performance across multiple parameters, including chemical composition and functional properties. The study's findings underscore the potential of advanced decision-making tools such as WASPAS in improving food production processes, demonstrating broader applicability across the food industry to optimise raw material selection.
Copyrights © 2024