This research discusses the application of the Latent Dirichlet Allocation (LDA) method to determine news text topics, providing new insights into media content analysis. This research aims to develop a model that can increase the accuracy and efficiency of topic identification in Indonesian news texts. The research uses a quantitative approach with experimental methods, quantitative analysis, and model validation, where news text data is processed and analyzed using LDA. The results show that the developed model can accurately identify news topics, showing significant improvements compared to existing methods. The implications are substantial for practitioners and researchers in journalism and media analysis, offering more efficient and effective strategies for managing and understanding large flows of information and opening new directions for advanced research in news text analysis.
Copyrights © 2024