Jurnal Aplikasi Statistika & Komputasi Statistik
Vol 16 No 1 (2024): Jurnal Aplikasi Statistika & Komputasi Statistik

Performance Study of Prediction Intervals with Random Forest for Poverty Data Analysis

Valentika, Nina (Unknown)
Notodiputro, Khairil Anwar (Unknown)
Sartono, Bagus (Unknown)



Article Info

Publish Date
30 Jun 2024

Abstract

Introduction/Main Objectives: Determine the prediction interval with for analyzing poverty data at the Regency/City level in Indonesia. Background Problems: Poverty will be a topic in various discussion and debates in the future. Novelty: This study’s methods for constructed prediction intervals are LM, Quant, SPI, HDR, and CHDR. This method can improve the prediction interval performance with Random Forests. Research Methods: The method for building forests and obtaining BOP in this study is CART with the LS splitting rule. Finding/Results: The results of this study are that the best method for one replication is HDR with 500 trees. The best method for 100 repetitions is LM. Based on hypothesis testing, there is sufficient evidence to say no difference between the LM, SPI, Quant, HDR, and CHDR methods for 100 replications at a 5% significance level.

Copyrights © 2024






Journal Info

Abbrev

jurnalasks

Publisher

Subject

Computer Science & IT Decision Sciences, Operations Research & Management Mathematics

Description

Redaksi menerima karya ilmiah atau artikel penelitian mengenai kajian teori statistika dan komputasi statistik pada bidang ekonomi dan sosial dan kependudukan, serta teknologi informasi. Redaksi berhak menyunting tulisan tanpa mengubah makna subtansi tulisan. Isi jurnal Aplikasi Statistika dan ...