The use of the Decision Tree method in smartphone price classification is the focus of this study. By using the 10 most relevant features and data normalization to achieve scale consistency, the Decision Tree algorithm delivers an average accuracy of 81%. Although some false positives and false negatives occur, the model is able to classify smartphone prices well, especially in identifying low and high prices. These results provide important insights into the features that affect smartphone prices. While there is still room for improvement, this model provides a solid foundation for the smartphone industry to determine prices based on certain specifications. The importance of relevant feature selection and data normalization was revealed in this study. Despite the accuracy reaching 81%, improvements in the classification of medium and high price classes are still possible to reduce prediction errors. This method provides an important basis for the smartphone industry to set prices based on specifications, and data mining techniques such as Decision Tree can be improved to improve the accuracy of future price predictions.
Copyrights © 2023